Skip to main content

Linear Least Squares

  • Chapter
Scientific Data Analysis
  • 270 Accesses

Abstract

In the previous chapter we talked, in general, about the method of least squares and, in particular, the mathematical justification for selecting it over other criteria. In this chapter we consider practical methods for analyzing a least squares problem. Equations (4.4)–(4.8) present a brief derivation, by calculus, of the normal equations, still the most popular—but by no means only—way of solving least squares problems; in Section 5.4 we shall see that orthogonal transformations allow us to obtain a least squares solution without forming normal equations, a procedure that offers certain advantages but also suffers from some drawbacks, something that proponents of orthogonal transformations frequently overlook.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Branham, R.L., Jr. (1986). Is Robust Estimation Useful for Astronomical Data Reduction?, Quarterly J. Royal Astron. Soc., 27, p. 182.

    Google Scholar 

  • Coleman, D., Holland, P., Kaden, N., Klema, V., and Peters, S.C. (1980). A System of Subroutines for Iteratively Reweighted Least Squares Computations, ACM Trans Math. Software, 6, p. 327.

    Article  MATH  Google Scholar 

  • Faddeeva, V.N. (1959). Computational Methods of Linear Algebra ( Dover, New York).

    MATH  Google Scholar 

  • Forsythe, G., Malcolm, MA, and Moler, CB (1977). Computer Methods for Mathematical Computations (Prentice-Hall, Englewood Cliffs, N.J.).

    MATH  Google Scholar 

  • Forsythe, G. and Moler, C.B. (1967). Computer Solution of Linear Algebraic Systems (Prentice-Hall, Englewood Cliffs, N.J.).

    MATH  Google Scholar 

  • Givens, W. (1954). Numerical Computation of the Characteristic Values of a Real Symmetric Matrix, Oak Ridge Nat. Lab. Report ORNL—1574 ( Oak Ridge, Tenn.).

    Google Scholar 

  • Golub, G.H. and Wilkinson, J.H. (1966). Note on the Iterative Refinement of Least Squares Solution, Numer. Math., 9, p. 139.

    Article  MathSciNet  MATH  Google Scholar 

  • Hanson, R.J. (1973). Is the Fast Givens Transformation Really Fast?, ACM SIGNUM Newsletter, 8, p. 7.

    Article  Google Scholar 

  • Householder, A.S. (1958). Unitary Triangularization of a Nonsymmetric Matrix, J. ACM. 5, p. 339.

    Article  MathSciNet  MATH  Google Scholar 

  • Jennings, L.S. and Osborne, M.R. (1974). A Direct Error Analysis for Least Squares, Numer. Math., 22, p. 325.

    Article  MathSciNet  MATH  Google Scholar 

  • Lawson, C.L. and Hanson, R.J. (1974). Solving Least Squares Problems (Prentice-Hall, Englewood Cliffs, N.J.).

    MATH  Google Scholar 

  • Wilkinson, J.H. (1965). The Algebraic Eigenvalue Problem ( Oxford University Press, Oxford).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Branham, R.L. (1990). Linear Least Squares. In: Scientific Data Analysis. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3362-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3362-6_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7981-5

  • Online ISBN: 978-1-4612-3362-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics