Advertisement

Introduction to Overdetermined Systems

  • Richard L. BranhamJr.

Abstract

After much preliminary discussion we finally begin in this chapter with the subject of overdetermined systems. In this chapter, and the next two, we assume linear overdetermined systems, a restriction that will be relaxed in Chapter 7. Our system is where
$$ A\cdot X = d, $$
(4.1)
Where A matrix, called the data matrix or matrix of equations of condition, of size m x n, with mn, X is an n vector of the desired solution, and d is an m vector of observations or experimental data points.

Keywords

Gaussian Elimination Observational Error Overdetermined System Minor Planet Large Residual 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Airy, G. (1856). Remarks on Pierce’s Criterion, Astron. J., 4, p. 137.CrossRefGoogle Scholar
  2. Branham, R.L., Jr (1986). Is Robust Estimation Useful for Astronomical Data Reduction?, Quarterly J. Royal Astron. Soc., 27, p. 182.Google Scholar
  3. Edgeworth, F.Y. (1887a). A New Method of Reducing Observations Relating to Several Quantities, Phil Mag, 23, p. 222.Google Scholar
  4. Edgeworth, F.Y. (1887b). On Discordant Observations, Phil. Mag., 24, p. 364.Google Scholar
  5. Edgeworth, F.Y. (1887c). The Choice of Means, Phil. Mag., 24, p. 268.Google Scholar
  6. Fike, C.L. (1968). Computer Evaluation of Mathematical Functions (Prentice-Hall, Englewood Cliffs, N.J.).MATHGoogle Scholar
  7. Forsythe, G. and Moler, C.B. (1967). Computer Solution of Linear Algebraic Systems (Prentice-Hall, Englewood Cliffs, N.J.).MATHGoogle Scholar
  8. Gauss, K.F. (1963). Theory of the Motion of the Heavenly Bodies Moving about the Sun in Conic Sections ( Dover, New York).MATHGoogle Scholar
  9. Pierce, B. (1852). Criterion for the Rejection of Doubtful Observations, Astron. J., 2, p. 161.CrossRefGoogle Scholar
  10. Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. (1986). Numerical Recipes: The Art of Scientific Computing ( Cambridge University Press, Cambridge).Google Scholar
  11. Ptolemy, C. (1952). The Almagest. Vol. 16: Great Books of the Western World ( Encyclopedia Britannica, Chicago).Google Scholar
  12. Scarborough, J.B. (1966). Numerical Mathematical Analysis, 6th ed. ( The John Hopkins Press, Baltimore).MATHGoogle Scholar
  13. Smart, W.M. (1958). Combination of Observations ( Cambridge University Press, Cambridge).MATHGoogle Scholar
  14. Stigler, S.M. (1977). Do Robust Estimators Work with Real Data?, Annal. Stat., 5, p. 1055.MathSciNetMATHCrossRefGoogle Scholar
  15. Whittaker, E. and Robinson, G. (1967). The Calculus of Observations ( Dover, New York).Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Richard L. BranhamJr.
    • 1
  1. 1.Jefe Area Matematicas y Del Centro Regional de Investigaciones Científicas y TecnológicasMendozaArgentina

Personalised recommendations