Skip to main content

A Cellular Basis for the Potential Atherogenicity of Triglyceride-Rich Lipoproteins

  • Conference paper
Pathobiology of the Human Atherosclerotic Plaque

Abstract

Two potential intiating events in atherosclerosis are endothelial injury and the accumulation of lipid-filled foam cells in the arterial intima. Ross and Glomset suggested that atherosclerosis may be a response to some form of endothelial injury (1). By this mechanism, changes in endothelial permeability could expose the arterial intima, the site of plaque initiation, to all blood components, including monocytes, lipoproteins, platelets, and coagulation factors with ensuing lipid accumulation and fibrin deposition. A second important initiating event in atherosclerosis is the accumulation of foam cells in the intima of the arterial wall (2–4). Many arterial foam cells are monocyte-derived macrophages that are engorged with cholesteryl ester (5). LDL are the major carriers of cholesterol in the blood and have long been considered to be the primary atherogenic lipoprotein. This represents a paradox in terms of the initiation of atherosclerosis, however, since native, unmodified LDL are not toxic in endothelial cells and do not produce foam cells in vitro when incubated with macrophages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ross R, Glomset JA (1973) Atherosclerosis and the arterial smooth muscle cell. Science 180:1332–1339

    Article  PubMed  CAS  Google Scholar 

  2. Gerrity, RG (1981) The role of monocyte in athero-genesis: I. Transition of blood-borne monocytes into foam cells in fatty lesions. Am J Clin Pathol 103(2):181–190

    CAS  Google Scholar 

  3. Faggiotto A and Ross R (1984) Studies of hypercholesterolemia in the nonhuman primate. Arterosclerosis 4:323–340

    Article  CAS  Google Scholar 

  4. Brown MS, Goldstein JL (1983) Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Am Rev Biochem 52:223–261

    Article  CAS  Google Scholar 

  5. Fowler S, Shio H and Haley NJ (1979) Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. Laboratory Investigation 41(4):372–378

    PubMed  CAS  Google Scholar 

  6. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D (1984) Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density. Proc Natl Acad Sci USA 81:3883–3887

    Article  PubMed  CAS  Google Scholar 

  7. Fogelman AM, Shechter I, Seager J, Hokom M, Child JS, Edwards, PA (1980) Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci USA 77:2214–2218

    Article  PubMed  CAS  Google Scholar 

  8. Hessler JR, Morel DW, Lewis LJ, Chisolm, GM (1983) Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Arteriosclerosis 3:215–222

    CAS  Google Scholar 

  9. Gianturco SH, Bradley WA, Gotto AM Jr, Morrisett JD, Peavy DL (1982) Hypertriglyceridemic very low density lipoproteins induce triglyceride synthesis and accumulation in mouse peritoneal macrophages. J Clin Invest 70:168–178

    Article  PubMed  CAS  Google Scholar 

  10. Nestel PJ, Billington T, Bazelmans J (1985) Metabolism of human plasma triacylglycerol-rich lipoproteins in rodent macrophages: capacity for interaction at β-VLDL receptor. Biochim Biophys Acta 837:314–324

    PubMed  CAS  Google Scholar 

  11. Van Lenten BJ, Fegelman AM, Hokom MM, Benson L, Haberland ME, Edwards PA (1983) Regulation of the uptake and degradation of β-very low density lipoprotein in human monocyte-macrophages. J Biol Chem 258:5151–5157.

    PubMed  Google Scholar 

  12. Gianturco SH, Brown SA, Via DP, Bradley WL (1986) The β-VLDL receptor pathway of murine P388D1 macrophages. J Lipid Res 27:412–420

    PubMed  CAS  Google Scholar 

  13. Parker F, Bagdade JD, Odland GF, Bierman EL (1970) Evidence for the chylomicron origin of lipids accumulating in diabetic eruptive xanthomas: a correlative lipid biochemical, histochemical, and electron microscopic study. J Clin Invest 49:2172–2187

    Article  PubMed  CAS  Google Scholar 

  14. Shen BW, Scanu AM, Kezdy FJ (1977) Structure of human serum lipoproteins inferred from compositional analysis. Proc Natl Acad Sci USA 74:837–841

    Article  PubMed  CAS  Google Scholar 

  15. Eisenberg S, Gavish D, Oschry Y, Fainaru M, Deckelbaum RJ (1984) Abnormalities in very low, low, and high density lipoproteins in hypertriglyceridemia. Reversal toward normal with bezafibrate treatment. J Clin Invest 74:470–482

    Article  PubMed  CAS  Google Scholar 

  16. Gianturco SH, Gotto AM Jr, Jackson RL, Patsch JR, Sybers HD, Taunton OD, Yeshurun DL, Smith LC (19 78) Control of 3-hydroxy-3-methylglutaryl-CoA reductase activity in cultured human fibroblasts by very low denisty lipoproteins of subjects with hypertriglyceridemia. J Clin Invest 61:320–328

    Article  PubMed  CAS  Google Scholar 

  17. Gianturco SH, Packard CJ, Shepherd J, Smith LC, Catapano AL, Sybers HD, Gotto AM Jr (1980) Abnormal suppression of 3-hydroxy-3-methylglutaryl-CoA reductase activity in cultured human fibroblasts by hypertriglyceridemic very low density lipoprotein subclasses. Lipids 15:456–463

    Article  PubMed  CAS  Google Scholar 

  18. Gianturco SH, Brown FB, Gotto AM Jr, Bradley WA (1982) Receptor-mediated uptake of hypertriglyceridemic very low density lipoproteins by normal human fibroblasts. J Lipid Res 23:984–993

    PubMed  CAS  Google Scholar 

  19. Poyser A, Nestel PJ (1979) Metabolism of very low density lipoproteins by human mononuclear cells. Artery 6:122–143

    CAS  Google Scholar 

  20. Krul ES, Tikkanen MJ, Cole TG, Davie JM, Schonfeld G (1985) Roles of apolipoproteins B and E in the cellular binding of very low density lipoproteins. J Clin Invest 75:361–369

    Article  PubMed  CAS  Google Scholar 

  21. Gianturco SH, Gotto AM Jr, Hwang S-LC, Karlin JB, Lin AHY, Prasad SC, Bradley WA (1983) Apolipoprotein E mediates uptake of Sf100–400 hypertriglyceridemic very low density lipoproteins by the low density lipoprotein receptor pathway in normal human fibroblasts. J Biol Chem 258:4526–4533

    PubMed  CAS  Google Scholar 

  22. Bradley WA, Hwang S-LC, Karlin JB, Lin AHY, Prasad SC, Gotto AM Jr, Gianturco SH (1984) Low-density lipoprotein receptor binding determinants switch from apolipoprotein B during conversion of hypertriglyceridemic very-low-density lipoportein to low-density lipoproteins. J Biol Chem 259:14728–14735

    PubMed  CAS  Google Scholar 

  23. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232 (4746):34–47

    Article  PubMed  CAS  Google Scholar 

  24. Gianturco SH, Eskin SG, Navarro LT, Lahart CJ, Smith LC, Gotto AM Jr (1980) Abnormal effects of hypertri-acylglycerolemic very low-density lipoproteins on 3-hydroxy-3-methylglutaryl-CoA reductase activity and viability of cultured bovine aortic endothelial cells. Biochim Biophys Acta 618:14 3–152

    Google Scholar 

  25. Glum CB, Aron L, Sciacca R (1980) Radioimmunoassay studies of human apolipoprotein E. J Clin Invest 66:1240–1250

    Article  Google Scholar 

  26. Schonfeld G, Patsch W, Pfleger B, Witztum JL, Weidman SW (1979) Lipolysis produces changes in the immuno-reactivity and cell reactivity of very low density lipoproteins. J Clin Invest 64:1288–1297

    Article  PubMed  CAS  Google Scholar 

  27. Reardon MF, Fridge NH, Nestel PJ (1978) Catabolism of very low density lipoprotein B apoprotein in man. J Clin Invest 61:850–860

    Article  PubMed  CAS  Google Scholar 

  28. Fredrickson DS, Goldstein JL, Brown MS (1978) The familial hyperlipoproteinemias. In: Stanbury JG, Syngaarden MF, Fredrickson DS (eds) The Metabolic Basis of Inherited Diseases, 4th edition. McGraw-Hill, New York, pp 604–655

    Google Scholar 

  29. Khoo, JC, Vance JE, Mahoney, EM, Jensen D, Wancewicz E, Steinberg D (1984) Neutral triglyceride lipase in macrophages. Arteriosclerosis 4:34–40

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Gianturco, S.H., Bradley, W.A. (1990). A Cellular Basis for the Potential Atherogenicity of Triglyceride-Rich Lipoproteins. In: Glagov, S., Newman, W.P., Schaffer, S.A. (eds) Pathobiology of the Human Atherosclerotic Plaque. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3326-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3326-8_33

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7968-6

  • Online ISBN: 978-1-4612-3326-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics