Water and Energy Exchange

  • Robert E. Dickinson
Part of the Ecological Studies book series (ECOLSTUD, volume 79)

Abstract

The goal of obtaining water and energy exchange on continental scales from remote sensing is fundamental to the questions not only of ecosystem functioning but also of land climate processes and regional hydrology. A general conceptual framework is described here for carrying out this work. Progress up to now has been limited for several reasons: the current sensing systems are probably inadequate for the task, the information content of potential future systems has not been adequately characterized by modeling sensitivity studies, and the linked remote sensing and modeling infrastructure has not yet been developed that is needed to carry out this activity.

Keywords

Dioxide Microwave Radar Assimilation Water Vapor Removal 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alley, W.M. (1984). The Palmer Drought Severity Index: limitations and assumptions. JCAM 23:1100–1109.Google Scholar
  2. Austin, P.M. (1987). Relation between measured radar reflectivity and surface rainfall. Mon. Wea. Rev. 115:1053–1070.CrossRefGoogle Scholar
  3. Band, L.E. (1986). Topographic partition of watersheds with digital elevation models. Water Resources Res. 22(1): 15–24.CrossRefGoogle Scholar
  4. Baumgartner, A., and Reichel, E. (1975). The World Water Balance. Elsevier, NY.Google Scholar
  5. Becker, F., and Choudhury, B.J. (1988). Relative sensitivity of normalized difference vegetation index (NDVI) and microwave polarization difference index (MPDI) for vegetation and desertification monitoring. Remote Sens. Envir. 24:287–311.CrossRefGoogle Scholar
  6. Bell, T.L. (1987). A space-time stochastic model of rainfall for satellite remote-sensing studies. J. Geophys. Res. 92(D8): 9631–9643.CrossRefGoogle Scholar
  7. Bengtsson, L., Ghil, M., and Källén, E. (1980). Dynamic Meteorology: Data Assimilation Methods. Springer-Verlag, NY.Google Scholar
  8. Bengtsson, L., and Shukla, J. (1988). Integration of space and in situ observations to study global climate change. Bull. Amer. Meteorol. Soc. 69(10): 1130–1143.CrossRefGoogle Scholar
  9. Beven, K.J., Wood, E.F., and Sivapalan, M. (1988). On hydrological heterogeneity-catchment morphology and catchment response. J. Hydrology 100: 353–375.CrossRefGoogle Scholar
  10. Blanchard, B.J., McFarland, M.J., Schmugge, T.J., and Rhoades, E. (1981). Estimation of soil moisture with API algorithms and microwave emission. Water Resources Bull. 17(5): 767–774.Google Scholar
  11. Bryan, F., and Oort, A. (1984). Seasonal variation of the global water balance based on aerological data. J. Geophys. Res. 89(D7): 11CrossRefGoogle Scholar
  12. Bryan, F., and Oort, A. (1984). Seasonal variation of the global water balance based on aerological data. J. Geophys. Res. 89(D7): 717–11.CrossRefGoogle Scholar
  13. Bryan, F., and Oort, A. (1984). Seasonal variation of the global water balance based on aerological data. J. Geophys. Res. 89(D7):, 730.CrossRefGoogle Scholar
  14. Camillo, P.J., Gurney, R.J., and Schmugge, T.J. (1983). A soil and atmospheric boundary layer model for evapotranspiration and soil moisture studies. Water Resources Res. 19(2): 371–380.CrossRefGoogle Scholar
  15. Carlson, T.N. (1986). Regional-scale estimates of surface moisture availability and thermal measurements. Remote Sens. Rev. 1:197–247.Google Scholar
  16. Carlson, T.N., Dodd, J.K., Benjamin, S.G., and Cooper, J.N. (1981). Satellite estimation of the surface energy balance, moisture availability and thermal inertia. J. Appl. Meteorol. 20:67–87.CrossRefGoogle Scholar
  17. Choudhury, B.J. (1987). Relationships between vegetation indices, radiation absorption, and net photosynthesis evaluated by a sensitivity analysis. Remote Sens. Envir. 22:209–233.CrossRefGoogle Scholar
  18. Choudhury, B.J., and Blanchard, B.J. (1983). Simulating soil water recession coefficients for agricultural watersheds. Water Resources Bull. 19(2): 241–247.Google Scholar
  19. Choudhury, B.J., and Golus, R. E. (1988). Estimating soil wetness using satellite data. Int. J. Remote. Sens. 9(7): 1251–1257.CrossRefGoogle Scholar
  20. Choudhury, B.J., and Monteith, J.L. (1988). A four-layer model for the heat budget of homogeneous land surfaces. Quart. J. Meteorol. Soc. 114:373–398.CrossRefGoogle Scholar
  21. Choudhury, B.J., Tucker, C.J., Golus, R.E., and Newcomb, W.W. (1987). Monitoring vegetation using Nimbus-7 scanning multichannel microwave radiometer data. Int. J. Remote Sens. 8:533–538.CrossRefGoogle Scholar
  22. Corio, L.A., and Pinker, R.T. (1987). Estimating monthly mean water and energy budgets over the central U.S. Great Plains. Part II: Evapoclimatonomy experiments. Mon. Wea. Rev. 115:1153–1160.CrossRefGoogle Scholar
  23. Darnell, W.L., Staylor, W.F., Gupta, S.K., and Denn, F.M. (1988). Estimation of surface insolation using sun-synchronous satellite data 1. J. Climate 8:820–835.CrossRefGoogle Scholar
  24. Deardorff, J. (1978). Efficient prediction of ground temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res. 83:1889–1903.CrossRefGoogle Scholar
  25. Delworth, T.L., and Manabe, S. (1988). The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate 1:523–547.CrossRefGoogle Scholar
  26. Diak, G., and Gautier, C. (1983). Improvements to a simple physical model for estimating insolation from GOES data. JCAM 22:505–508.Google Scholar
  27. Diak, G., Heikkinen, S., and Bates, J. (1986). The influence of variations in surface treatment on 24-hour forecasts with a limited area model, including a comparison of modeled and satellite-measured surface temperatures. Mon. Wea. Rev. 114:215–232.CrossRefGoogle Scholar
  28. Dickinson, R.E. (1984). Modeling evapotranspiration for three-dimensional global climate models. pp. 58–72. In J.E. Hansen and T.Takahashi (eds.), Climate Processes and Climate Sensitivity. Geophys. Mono. 29. Amer. Geophys. Union, Washington, DC.CrossRefGoogle Scholar
  29. Dickinson, R.E. (1988). The force-restore model for surface temperatures and its generalizations, J. Climate 1:1086–1097.CrossRefGoogle Scholar
  30. Dickinson, R.E., Henderson-Sellers, A., Kennedy, P.J., and Wilson, M.F. (1986). Biosphere Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. Nat. Center for Atmos. Res. Tech Note/TN275 + STR.Google Scholar
  31. DiMego, G.J. (1988). The national meteorological center regional analysis system. Mon. Wea. Rev. 116:977–1000.CrossRefGoogle Scholar
  32. Eagleman, J.R., and Lin, W.C. (1976). Remote sensing of soil moisture by a 21-cm passive radiometer. J. Geophys. Res. 81(21): 3660–3666.CrossRefGoogle Scholar
  33. Eagleson, P.S. (1982). Ecological optimality in water limited natural soil-vegetation systems. 1. Theory and hypothesis. Water Resources Res. 18:325–340.CrossRefGoogle Scholar
  34. Ehler, W.L., Idso, S.B., Jackson, R.D., and Reginato, R.J. (1978). Diurnal changes in plant water potential and canopy temperature of wheat as affected by drought. Agron. J. 70:999–1004.CrossRefGoogle Scholar
  35. Flores, A.L., and Carlson, T.N. (1987). Estimation of surface moisture availability from remote temperature measurements. J. Geophys. Res. 92(D8): 9581–9585.CrossRefGoogle Scholar
  36. Gleick, P.H. (1986). Methods for evaluating the regional hydrologic impacts of global climatic changes. J. Hydrology 88:97–116.CrossRefGoogle Scholar
  37. Griffith, C.G. (1987). Comparisons of gauge and satellite rain estimates for the central United States during August 1979. J. Geophys. Res. 92(D8):9551–9566.CrossRefGoogle Scholar
  38. Hechinger, E., Becker, F., and Raffy, N. (1982). Comparison between the accuracies of a new discretization method and an improved Fourier method to evaluate heat transfers between soil and atmosphere. J. Geophys. Res. 87:7325–7339.CrossRefGoogle Scholar
  39. Hope, A.S. (1988). Estimation of wheat canopy resistance using combined remotely sensed spectral reflectance and thermal observations. Remote Sens. Envir. 24:369–383.CrossRefGoogle Scholar
  40. Hope, A.S., Petzold, D.E., Goward, S.N., and Ragan, R.M. (1986). Simulated relationships between spectral reflectance, thermal emissions, and evapotranspiration of a soybean canopy. Water Resources Bull. 22(6): 1011–1019.Google Scholar
  41. Idso, S.B., and Ehler, W.L. (1976). Estimating soil moisture in the root zone of crops. A technique adaptable to remote sensing. Geophys. Res. Lett. 3:23–25.CrossRefGoogle Scholar
  42. Idso, S.B., Jackson, R.D., and Reginato, R.T. (1975). Estimating evaporation: A technique adaptable to remote sensing. Science 189:991–992.PubMedCrossRefGoogle Scholar
  43. Idso, S.B., Jackson, R.D., and Reginato, R.J. (1977). An equation for potential evaporation from soil, water and crop surfaces adaptable to use by remote sensing. Geophys. Res. Lett. 4:187–188.CrossRefGoogle Scholar
  44. Isaacs, R.G., Hoffman, R.N., and Kaplan, L.D. (1986). Satellite remote sensing of meteorological parameters for global numerical weather prediction. Rev. Geophys. 24(4): 701–743.CrossRefGoogle Scholar
  45. Jackson, R.D. (1985). Evaluating evapotranspiration at local and regional scales. Proc. IEEE 73(6): 1086–1096.CrossRefGoogle Scholar
  46. Jackson, R.D., and Reginato, R.J. (1976). Compensating for environmental variability in the thermal inertia approach to remote sensing of soil moisture. J. Appl. Meteorol. 15:811–817.CrossRefGoogle Scholar
  47. Jackson, T.J., and O’Neil, P. (1987). Temporal observations of surface soil moisture using a passive microwave sensor. Remote Sens. Envir. 21:281–296.CrossRefGoogle Scholar
  48. Kahle, A.B. (1977). A simple thermal model of the earth’s surface for geologic mapping by remote sensing. J. Geophys. Res. 82:1673–1680.CrossRefGoogle Scholar
  49. Karl, T.R. (1986). The relationship of soil moisture parameterizations to subsequent seasonal and monthly mean temperature in the United States. Mon. Wea. Rev. 114:675–686.CrossRefGoogle Scholar
  50. Kellogg, W.W., and Zhao, A. (1988). Sensitivity of soil moisture to doubling of carbon dioxide in climate model experiments. Part 1: North America. J. Climate 1:348–366.CrossRefGoogle Scholar
  51. Manabe, S. (1969). Climate and ocean circulation:I. The atmospheric circulation and the hydrology of the earth’s surface. Mon. Wea. Rev. 97: 739–774.CrossRefGoogle Scholar
  52. Nemani, R.R., and Running, S.W. (1989). Testing a theoretical climate-soil-leaf area hydrologic equilibrium of forests using satellite data and ecosystem simulation. Agric. Forest Meteorol. 44:245–260.CrossRefGoogle Scholar
  53. Nogues-Paegle, J., and Daley, R. (1988). Summary of the global weather experiment workshops on the hydrological cycle and data assimilation. Bull. Amer. Meteorol. Soc. 69(4): 377–382.Google Scholar
  54. Peixoto, J.P., and Oort, A.H. (1983). The Atmospheric Branch of the Hydrological Cycle and Climate. Variations in the Global Water Budget. Reidel. Norwell, MA, pp. 5–65.Google Scholar
  55. Pinker, R.T., and Corio, L.A. (1987). Estimating monthly mean water and energy budgets over the central U.S. Great Plains. Part I: Evapoclimatonomy model formulation. Mon. Wea. Rev. 115(6): 1140–1152.CrossRefGoogle Scholar
  56. Pinker, R.T., and Ewing, J. A. (1986). Effect of surface properties on the narrow to broadband spectral relationship in clear sky satellite observations. Remote Sens. Envir. 20:267–282.CrossRefGoogle Scholar
  57. Prevot, L., Bernard, R., Taconet, O., Vidal-Madjar, D., and Thony, J.L. (1984). Evaporation from a bare soil evaluated using a soil water transfer model and remotely sensed surface soil moisture data. Water Resources Res. 20(2): 311–316.CrossRefGoogle Scholar
  58. Price, J.C. (1977). Thermal inertia mapping: A new view of the earth. J. Geophys. Res. 82:2582–2590.CrossRefGoogle Scholar
  59. Priestley, C.H.B., and Taylor, R.J. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev. 100(2): 81–92.CrossRefGoogle Scholar
  60. Rasmusson, E.M. (1968). Atmospheric water vapor transport and the water balance of North America. Mon. Wea. Rev. 96(10): 720–734.CrossRefGoogle Scholar
  61. Rodriguez-Iturbe, I. (1986). Scale of fluctuation of rainfall models. Water Resources Res. 22(9): 15S–37S.CrossRefGoogle Scholar
  62. Running, S.W., and Nemani, R.R. (1988). Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sens. Envir. 24:347–367.CrossRefGoogle Scholar
  63. Savijärvi, H.I. (1988). Global energy and moisture budgets from rawinsonde data. Mon. Wea. Rev. 116(2): 417–430.CrossRefGoogle Scholar
  64. Schmugge, T. (1987). Remote sensing applications in hydrology. Rev. Geophys. 25(2): 148–152.CrossRefGoogle Scholar
  65. Schmugge, T.J., Wang, J.R., and Asra, G. (1988). Results from the push broom microwave radiometer flights over the Konza Prairie in 1985. IEEE Trans. Geosci. Remote Sens. 26(5): 590–596.CrossRefGoogle Scholar
  66. Seguin, B., and Itier, B. (1983). Using midday surface temperature to estimate daily evaporation satellite thermal IR data. Int. J. Remote Sens. 4(2): 371–383.CrossRefGoogle Scholar
  67. Sellers, P.J. (1985). Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 6(8): 1335–1372.CrossRefGoogle Scholar
  68. Sellers, P.J., Mintz, Y., Sud, Y.C., and Dalcher, A. (1986). A simple biosphere model (SiB) for use within general circulation models. J Atmos. Sci. 43:505–531.CrossRefGoogle Scholar
  69. Sellers, P.J., Rasool, S.I., and Bolle, H.J. (eds.). Satellite data algorithms for studies of the land surface. Proc. ISLSCP Workshop held at the Jet Propulsion Laboratory, Jan. 1987. ISLSCP Rep. no 9, Goddard Space Flight Center, Greenbelt, MD.Google Scholar
  70. Serafini, Y.V. (1987). Estimation of the evapotranspiration using surface and satellite data. Int. J. Remote Sens. 8(10): 1547–1562.CrossRefGoogle Scholar
  71. Simpson, J., Adler, R.F., and Negri, A.J. (1988a). On improved validation of rainfall estimates from geosynchronous IR products, pp. D-125-D-140. In Validation of Satellite Precipitation Measurements for the Global Precipitation Climatology Project. World Climate Programme Res. Rep. of Int. Wksp., held in Washington, DC, Nov. 17–21, WCRP-1, WMO/TD-No. 203. World Meteorological Organization, Geneva, Switzerland.Google Scholar
  72. Simpson, J.A., Adler, R.F., and North, G.R. (1988b). A proposed tropical rainfall measuring mission (TRMM) satellite. Bull. Amer. Meteorol. Soc. 69(3): 278–295.CrossRefGoogle Scholar
  73. Sinton, W.M., and Strong, J. (1960). Radiometric observations of Mars. Astrophys.J. 131:459–469.CrossRefGoogle Scholar
  74. Sivapalan, M., Beven, K., and Wood, E.F. (1987). On hydrologic similarity 2. A scaled model of storm runoff production. Water Resources Res. 23(12): 2266–2278.CrossRefGoogle Scholar
  75. Smith, W.L., Leslie, L.M., Diak, G.R., Goodman, B.M., Velden, C.S., Callan, G.M., Raymond, W., and Wade, G.S. (1988). The integration of meteorological satellite imagery and numerical dynamical forecast models. Phil. Trans. Roy. Soc. London A 324:317–323.CrossRefGoogle Scholar
  76. Soer, G.J.R. (1980). Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperatures. Remote Sens. Envir. 9:27–45.CrossRefGoogle Scholar
  77. Taconet, O., Bernard, R., and Vidal-Madjar, D. (1986a). Evapotranspiration over an agricultural region using a surface flux/temperature model based on NOAA-AVHRR data. JCAM 25:284–307.Google Scholar
  78. Taconet, O., Carlson, T., Bernard, R., and Vidal-Madjar, D. (1986b). Evaluation of a surface/vegetation parameterization using satellite measurements of surface temperature. JCAM 25:1752–1767.Google Scholar
  79. Tarpley, J.D., (1988). Some climatological aspects of satellite-observed surface heating in Kansas. J. Appl. Meteorol. 27:20–29.CrossRefGoogle Scholar
  80. Thornthwaite, C.W., and Mather, J.R. (1985). The water balance. Publ. Climatol. 8:1.Google Scholar
  81. Trenberth, K.E., Christy, J.R., and Olson, J.G. (1987). Global atmospheric mass, surface pressure, and water vapor variations. J. Geophys. Res. 92(D12): 14,815–14,826.CrossRefGoogle Scholar
  82. Tucker, C.J., and Choudhury, B.J., (1987). Satellite remote sensing of drought conditions. Remote Sens. Envir. 23:243–251.CrossRefGoogle Scholar
  83. Van De Griend, A.A., Camillo, P.J., and Gurney, R.J. (1985). Discrimination of soil physical parameters, thermal inertia, and soil moisture from diurnal surface temperature fluctuations. Water Resources Res. 21(7): 997–1009.CrossRefGoogle Scholar
  84. Walsh, J.E., Jasperson, W.H., and Ross, B. (1985). Influences of snow cover and soil moisture on monthly air temperture. Mon. Wea. Rev 113:756–768.CrossRefGoogle Scholar
  85. Watson, K., and Hummer-Miller, S. (1981). A simple algorithm to estimate the effective regional atmospheric parameters for the thermal-inertia mapping. Remote Sens. Envir. 11:455–462.CrossRefGoogle Scholar
  86. Wetzel, P.J., Atlas, D., and Woodward, R.H. (1984). Determining soil moisture from geosynchronous satellite infrared data: A feasibility study. JCAM 23:375–391.Google Scholar
  87. Wetzel, P.J., and Chang, J. (1988). Evapotranspiration from nonuniform surfaces: A first approach for short-term numerical weather prediction. Mon. Wea. Rev. 116:600–621.CrossRefGoogle Scholar
  88. Wetzel, P.J., and Woodward, R.H. (1987).Soil moisture estimation using GOESVISSR infrared data: A case study with a simple statistical method. JCAM 26:107–117.Google Scholar
  89. Willmott, C.J., Rowe, C.M., and Mintz, T. (1985). Climatology of the terrestrial seasonal water cycle. J Climatol. 5:589–606.CrossRefGoogle Scholar
  90. Wood, E.F., Sivapalan, M., Beven, K., and Band, L. (1988). Effects of spatial variability and scale with implications to hydrologic modeling. J. Hydrol. 102:29–47.CrossRefGoogle Scholar
  91. Woodward, F.I. (1987). Climate and Plant Distribution. Cambridge Univ. Press, Cambridge, England.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Robert E. Dickinson

There are no affiliations available

Personalised recommendations