Skip to main content

Analysis of Remotely Sensed Data

  • Chapter
Remote Sensing of Biosphere Functioning

Part of the book series: Ecological Studies ((ECOLSTUD,volume 79))

Abstract

The prospects for obtaining new information on a global scale rest on suitable access to, and organization and processing of, immense volumes of remotely sensed and other data. This chapter addresses the issue of processing high-dimensional spectral data for extraction of information on surface conditions or processes. The second part of the chapter describes some statistical methods and developments relevant to the use of remotely sensed data for estimates of surface condition or classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, T.W. (1958). An Inroduction to Multivariate Statistical Analysis. Wiley, NY.

    Google Scholar 

  • Campbell, N.A. (1982). Robust procedures in multivariate analysis. 1. Robust covariance estimation. Appl. Statist., 29:231–237.

    Article  Google Scholar 

  • Campbell, N.A. (1984). Some aspects of allocation and discrimination, (pp. 177–192). In G.N. van Vark and W.W. Howells, (eds.), Multivariate Statistical Methods in Physical Anthropology. Reidel, Amsterdam, Netherlands.

    Google Scholar 

  • Di Zenzo, S., Bernstein, R., Degloria, S.D., and Kolsky, H.G. (1987). Gaussian maximum likelihood and contextual classification algorithms for multicrop classification. IEEE Trans. Geosci. Remote Sens. GE-25(6): 805–814.

    Google Scholar 

  • Graetz, R.D., and Gentle, M.R. (1982). A study of the relationships between reflectance characteristics in the Landsat wavebands and the composition and structure of an Australian semi-arid rangeland. Photogramm. Eng. Remote Sens. 48:1721–1732.

    Google Scholar 

  • Hobbs, R.J., Wallace, J.F., and Campbell, N.A. (1989). Classification of native vegetation in the Western Australian wheatbelt using Landsat MSS data. Vege-tatio 80:91–105.

    Article  Google Scholar 

  • Jupp, D.L.B., Walker, J., and Penridge, L.K. (1986). Interpretation of vegetation structure in Landsat MSS imagery: a case study in disturbed eucalypt woodlands. Part 2. J. Envir. Manag. 23:25–37.

    Google Scholar 

  • Kauth, R.J., and Thomas, G.S (1976). The tasselled cap—A graphic description of the spectral temporal development of agricultural crops as seen by Landsat. Proc. Symp. on Machine Processing of Remotely Sensed Data, Purdue University, Lafayette, IN, pp. 4B41–4B51.

    Google Scholar 

  • Nagy, G. (1984). Advances in information extraction techniques. Remote Sens. Envir. 15:167–175.

    Article  Google Scholar 

  • Pech, R.P., Graetz, R.D., and Davis, A.W. (1986). Reflectance modelling and the derivation of vegetation indices for an Australian semi-arid shrubland. Int. J. Remote Sens. 7(3): 389–403.

    Article  Google Scholar 

  • Richards, J.A. (1984). Thematic mapping from multitemporal data using the principal components transformation. Remote Sens. Envir. 16:35–46.

    Article  Google Scholar 

  • Richards, J.A. (1986). Remote Sensing Digital Image Analysis. Springer-Verlag, Berlin.

    Google Scholar 

  • Schowengerdt, R.A. (1983). Techniques for Image Processing and Classification in Remote Sensing. Academic Press. NY.

    Google Scholar 

  • Sellers, P.J., Hall, F.G., Asrar, G., Strebel, D.E., and Murphy, R.E. (1988). The first ISLSCP field experiment (FIFE). Bull. Amer. Meteorol. Soc., 69(1): 22–27.

    Article  Google Scholar 

  • Swain, P.H., and Davis, S.M. (Eds.) (1978). Remote Sensing: The Quantitative Approach. McGraw-Hill, NY.

    Google Scholar 

  • Swain, P.H., Vardeman, S.B., and Tilton, J.C. (1981). Contextual classification of multispectral image data. Pattern Recogn. 13(6): 429–441.

    Article  Google Scholar 

  • Townshend, J.R.G., and Justice, C.O. (1988). Selecting the spatial resolution of satellite sensors required for global monitoring of land transformations. Int. J. Remote Sens. 9(2): 187–236.

    Article  Google Scholar 

  • Tucker, C.J., Vanpraet, C.L., Sharman, M.J., and Van Ittersum, G. (1985). Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sens. Envir. 17:233–250.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Wallace, J.F., Campbell, N. (1990). Analysis of Remotely Sensed Data. In: Hobbs, R.J., Mooney, H.A. (eds) Remote Sensing of Biosphere Functioning. Ecological Studies, vol 79. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3302-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3302-2_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7958-7

  • Online ISBN: 978-1-4612-3302-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics