Skip to main content

Remote Sensing of Spatial and Temporal Dynamics of Vegetation

  • Chapter
Remote Sensing of Biosphere Functioning

Part of the book series: Ecological Studies ((ECOLSTUD,volume 79))

Abstract

Most of the world’s vegetation is in a state of flux at a variety of spatial and temporal scales. Plant growth and reproductive patterns respond to seasonal fluctuations in climate. Yearly climatic variations are also responsible for differences in species growth and establishment patterns, leading to changes in species composition and distributions. Over long periods of time, directional vegetational changes may occur through succession. Vegetation changes may take place at extremely small scales, for instance, in canopy gaps created by the death of individual trees (Shugart and West, 1981; Runkle, 1985), or over larger scales where vegetation responds to such disturbances as fires or floods. Species distributions may change rapidly in response to episodic events (e.g., Hobbs and Mooney, 1989), or over longer periods in response to climatic shifts (e.g., Davis, 1986; Delcourt and Delcourt, 1987). Evidence of past vegetational changes resulting from changes in climate during glaciation cycles reinforce the view that major vegetational shifts are possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adamson, D.A., and Fox, M.D. (1982). Change in Australasian vegetation since European settlement, pp. 109–146. In J.M.B. Smith (ed.), A History of Australasian Vegetation. McGraw-Hill, Sydney, Australia.

    Google Scholar 

  • Adomeit, E.M., Jupp, D.L.B., Margules, C., and Mayo, K.K. (1981). The separation of traditionally mapped land cover classes by LANDSAT data, pp. 150–165. In A.N. Gillison and D.J. Anderson (eds.), Vegetation Classification in Australia. Australian Nat. Univ. Press, Canberra.

    Google Scholar 

  • Ayyad, M.A., (1981). Soil-vegetation-atmosphere interactions, pp. 9–31. In D.W. Goodall, R.A. Perry, and K.M.W. Hones (ed.), Arid-land Ecosystems: Structure, Function and Management, Vol. 2. Cambridge Univ. Press, Cambridge, England.

    Google Scholar 

  • Bell, D.T., and Stephens, L.J. (1984). Seasonality and phenology of kwongan species, pp. 205–226. In J.S. Pate, and J.S. Beard (eds.), Kwongan Plant Life of the Sandplain. Univ. of Western Australia Press, Nedlands.

    Google Scholar 

  • Bolin, B., Doos, B.R., Jager, J., and Warrik, R.A. (eds.) (1987). The Greenhouse Effect, Climatic Change, and Ecosystems. SCOPE 29. Wiley, NY.

    Google Scholar 

  • Botkin, D.B., Estes, J.E., MacDonald, R.M., and Wilson, M.V. (1984). Studying the earth’s vegetation from space. BioScience 34:508–514.

    Article  Google Scholar 

  • Broeker, W.S. (1987). Unpleasant surprises in the greenhouse? Nature 328:123–126.

    Article  Google Scholar 

  • Byrne, G.R., Crapper, P.F., and Mayo, K.K. (1980). Monitoring land cover changes by principal components analysis of multitemporal Landsat data. Remote Sens. Envir. 10:175–184.

    Article  Google Scholar 

  • Chaudhury, M.U. (1985). Landsat series: technical properties and application to vegetation studies, pp. 23–29. In Remote Sensing in Vegetation Studies. ESCAP-BIOTROP, Bogor, Indonesia.

    Google Scholar 

  • Christensen, E.J., Jensen, J.R., Ramsey, E.W., and Mackey, H.E. (1988). Aircraft MSS data registration and vegetation classification for wetland change detection. Int. J. Remote Sens. 9:23–38.

    Article  Google Scholar 

  • Clark, C.A., Cate, R.B., Trenchard, M.H., Boatright, J.A., and Bizzell, R.M. (1986). Mapping and classifying large ecological units. BioScience 36:476–478.

    Google Scholar 

  • Committee on Planetary Biology. (1986). Remote Sensing of the Biosphere. Nat. Academy Press, Washington, DC.

    Google Scholar 

  • Connell, J.H., and Slatyer, R.O. (1977). Mechanisms of succession in natural communities and their role in community stability and organisation. Amer. Nat. 111:1119–1144.

    Article  Google Scholar 

  • Currey, B., Fraser, A.S., and Bardsley, K.L. (1987). How useful is Landsat monitoring? Nature 328:587–589.

    Article  Google Scholar 

  • Davis, M.B. (1986). Climatic instability, time lags, and community disequilibrium, pp. 268–284. In J. Diamond and T.J. Case (eds.), Community Ecology. Harper and Row, NY.

    Google Scholar 

  • Delcourt, P.A., and Delcourt, H.R. (1987). Long-Term Forest Dynamics of the Temperate Zone. A Case Study of Late-Quaternary Forests in Eastern North America. Springer-Verlag, NY.

    Google Scholar 

  • Dregne, H.E., and Tucker, C.J. (1988). Green biomass and rainfall in semi-arid sub-Saharan Africa. J. Arid Envir. 15:245–252.

    Google Scholar 

  • Earth System Sciences Committee (1988). Earth System Science, a Closer View. NASA, Washington, DC.

    Google Scholar 

  • Foran, B.D. (1988). Detection of yearly cover change with Landsat MSS on pastoral landscapes in Central Australia. Remote Sens. Envir. 23:333–350.

    Article  Google Scholar 

  • Frank, T.D. (1984). The effect of change in vegetation cover and erosion patterns on albedo and texture of Landsat images in a semi-arid environment. Ann. Assoc. Amer. Geogr. 74:393–407.

    Article  Google Scholar 

  • Fung, T., and LeDrew, E. (1987). Application of principal components analysis to change detection. Photogramm. Eng. Remote Sens. 12:1649–1658.

    Google Scholar 

  • Goetz, A.F.H., Rock, B.N., and Rowan, L.C. (1983). Remote sensing for exploration: an overview. Econ. Geol. 78:573–590.

    Article  Google Scholar 

  • Goward, S.N., Tucker, C.J., and Dye, D.G. (1985). North American vegetation patterns observed with the NOAA-7 advanced very high resolution radiometer. Vegetatio 64:3–14.

    Article  Google Scholar 

  • Graetz, R.D. (1987). Satellite remote sensing of Australian rangelands. Remote Sens. Environ. 23:313–331.

    Article  Google Scholar 

  • Graetz, R.D., Gentle, M.R., Pech, R.P., O’Callaghan, J.R., and Drewien, G. (1983). The application of Landsat image data to rangeland assessment and monitoring: an example from South Australia. Aust. Rangel. J. 5:63–73.

    Article  Google Scholar 

  • Graetz, R.D., Walker, B.H., and Walker, P.A. (1988). The consequences of climatic change for seventy percent of Australia, pp. 399–420. In G.I. Pearman (ed.), Greenhouse. Planning for Climatic Change. CSIRO, Melbourne, Australia.

    Google Scholar 

  • Gray, A.J., Crawley, M.J. and Edwards, P.J. (1986). Colonisation, Succession and Stability. Blackwell, Oxford, England.

    Google Scholar 

  • Green, G.M. (1986). Use of SIR-A and Landsat MSS data in mapping shrub and intershrub vegetation at Koonamore, South Australia. Photogramm. Eng. Remote Sens. 52:659–670.

    Google Scholar 

  • Griffin, G.F., and Friedel, M.H. (1985). Discontinuous change in central Australia: some major implications of ecological events for land management. J. Arid Environ. 9:63–82.

    Google Scholar 

  • Hamburg, S.P., and Cogbill, C.V. (1988). Historical decline of red spruce populations and climatic warming. Nature 331:428–430.

    Article  Google Scholar 

  • Herrmann, K., Rock, B.N., Ammer, U., and Paley, H.N. (1988). Preliminary assessment of airborne imaging spectrometer and airborne thematic mapper data acquired for forest decline areas in the Federal Republic of Germany. Remote Sens. Environ. 24:129–149.

    Article  Google Scholar 

  • Hobbs, R.J., and Hopkins, A.J.M. (1990). From frontier to fragments: European impact on Australia’s vegetation. Proc. Ecol. Soc. Aust. 16 (in press).

    Google Scholar 

  • Hobbs, R.J., and Mooney, H.A. (1989). Effects of episodic events on Mediterranean-climate ecosystems. In F. di Castri, C. Floret, S. Rambal, and J. Roy (eds.), Timescales of Water Stress Response of Mediterranean Biota (in press).

    Google Scholar 

  • Hobbs, R.J., Wallace, J.F., and Campbell, N.A. (1989). Classification of vegetation in the Western Australian wheatbelt using Landsat MSS data. Vegetatio 80:91–105.

    Article  Google Scholar 

  • Horler, D.N.H., Barber, J., and Barringer, A.R. (1980). Effects of heavy metals on the absorbance and reflectance spectra of plants. Int. J. Remote Sens. 1:121–136.

    Google Scholar 

  • Horler, D.N.H., Dockray, M., Barber, J., and Barringer, A.R. (1983). Red edge measurements for remotely sensing plant chlorophyll content. Adv. Space Res. 3:273–277.

    Article  CAS  Google Scholar 

  • Huston, M., and Smith, T. (1987). Plant succession: life history and competition. Amer. Nat. 130:168–198.

    Article  Google Scholar 

  • Jenson, J.R., and Toll, D.L. (1982). Detecting residential land use development at the urban fringe. Photogramm. Eng. Remote Sens. 48:629–643.

    Google Scholar 

  • Johnson, A.H., and Siccama, T.C. (1984). Decline of red spruce in the northern Appalachians: Assessing the possible role of acid deposition. Tappi J. 67:68–72.

    CAS  Google Scholar 

  • Jupp, D.L.B., Walker, J., and Penridge, L.K. (1986). Interpretation of vegetation structure in Landsat MSS imagery: A case study in disturbed semi-arid eucalypt woodlands. Part 2. Model-based analysis. J. Envir. Manag. 23:35–37.

    Google Scholar 

  • Malingreau, J.P., Stephens, G., and Fellows, L. (1985). Remote sensing of forest fires: Kalimantan and North Borneo in 1982–83. Ambio 14:314–321.

    Google Scholar 

  • Malingreau, J.P., and Tucker, C.J. (1988). Large-scale deforestation in the southeastern Amazon Basin of Brazil. Ambio 17:49–55.

    Google Scholar 

  • Mooney, H.A. (1988). Ecologists and the global change program. Trends Ecol. Evol. 3:4–5.

    Article  Google Scholar 

  • Mooney, H.A., Hobbs, R.J., Gorham, J., and Williams, K. (1986). Biomass accumulation and resource utilisation in co-occurring grassland annuals. Oecologia (Berlin) 70:555–558.

    Article  Google Scholar 

  • Morton, A.J. (1986). Moorland plant community recognition using Landsat MSS data. Remote Sens. Environ. 20:291–298.

    Article  Google Scholar 

  • National Academy Press (1986). Global Change in the Geosphere-Biosphere: Initial Priorities for and IGBP. Nat. Acad. Press, Washington, DC.

    Google Scholar 

  • Pech, R.P., and Davis, A.W. (1987). Reflectance modeling of semiarid woodlands. Remote Sens. Environ. 23:365–377.

    Article  Google Scholar 

  • Pech, R.P., Davis, A.W., and Graetz, R.D. (1986a). Reflectance modeling and the derivation of vegetation indices for an Australian semi-arid shrubland. Int. J. Remote Sens. 7:389–403.

    Article  Google Scholar 

  • Pech, R.P., Davis, A.W., Lamcraft, R.R., and Graetz, R.D. (1986b). Calibration of Landsat data for sparsely vegetated arid rangelands. Int. J. Remote Sens. 8:1829–1850.

    Google Scholar 

  • Perry, C.R., Jr. and Lanternschlager, L.F. (1984). Functional equivalence of spectral vegetation indices. Remote Sens. Envir. 14:169–182.

    Article  Google Scholar 

  • Pickett, S.T.A., Collins, S.L., and Armesto, J.J. (1987). Models, mechanisms and pathways of succession. Bot. Rev. 53:335–371.

    Article  Google Scholar 

  • Pickup, G., and Chewings, V.H. (1986). Random field modelling of spatial variations in erosion and deposition in flat alluvial landscapes in arid central Australia. Ecol Model. 33:269–296.

    Article  Google Scholar 

  • Pickup, G., and Chewings, V.H. (1988). Forecasting patterns of soil erosion in arid lands from Landsat MSS data. Int. J. Remote Sens. 9:69–84.

    Article  Google Scholar 

  • Pitt, M.D., and Heady, H.F. (1978). Responses of annual vegetation to temperature and rainfall patterns in northern California. Ecology 59:336–350.

    Article  Google Scholar 

  • Postel, S. (1984). Acid pollution, acid rain and the future of forests. Worldwatch Paper 58:1–22.

    Google Scholar 

  • Richards, J. A. (1984). Thematic mapping from multitemporal image data using the principal components transformation. Remote Sens. Environ. 16:35–46.

    Article  Google Scholar 

  • Richards, J.A. (1986). Remote Sensing Digital Image Analysis. Springer-Verlag, Berlin.

    Google Scholar 

  • Richards, J.A., and Kelly, D.J. (1984). On the concept of spectral class. Int. J. Remote Sens. 5:987–991.

    Article  Google Scholar 

  • Rock, B.N., Hohsizaki, T., and Miller, J.R. (1988). Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline. Remote Sens. Environ. 24:109–127.

    Article  Google Scholar 

  • Rock, B.N., Vogelmann, J.E., Williams, D.L., Vogelmann, A.F., and Hoshizaki, T. (1986). Remote detection of forest damage. BioScience 36:439–445.

    Article  Google Scholar 

  • Rohde, W.G., and Olson, C.E. Jr. (1971). Estimating foliar moisture content from infrared reflectance data. pp. 144–164. In Third Biennial Workshop: Color Aerial Photography in the Plant Sciences and Related Fields. Amer. Soc. Photo-grarrim., Falls Church, VA.

    Google Scholar 

  • Roller, N.E.G., and Colwell J.E. (1986). Course-resolution satellite data for ecological surveys. BioScience 36:468–475.

    Article  Google Scholar 

  • Runkle, J.R. (1985). Disturbance regimes in temperate forests, pp. 17–33. In S.T.A. Pickett and P.S. White (eds), The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, NY.

    Google Scholar 

  • Saunders, D.A., Arnold, G.W., Burbidge, A.A., and Hopkins, A.J.M. (Eds.) (1987). Nature Conservation: The Role of Remnants of Native Vegetation. Surrey Beatty, Sydney, Australia.

    Google Scholar 

  • Saxon, B.C., and Dudzinski, M.L. (1984). Biological survey and reserve design by Landsat mapped ecolines—A catastrophe theory approach. Aust. J. Ecol. 9:117–123.

    Article  Google Scholar 

  • Schutt, P., and Cowling, E.B. (1985). Waldsterben, a general decline: symptoms, development. Plant. Dis. 69:548–558.

    Google Scholar 

  • Shugart, H.H., and West, D.C. (1981). Long-term dynamics of forest ecosystems. Amer.Sci. 69:647–652.

    Google Scholar 

  • Silvertown, J. (1980). The dynamics of a grassland ecosystem: botanical equilibrium in the park grass experiment. J. Appl. Ecol. 17:491–504.

    Article  Google Scholar 

  • Sing, A. (1983). Univariate image-differencing for forest change detection with Landsat. pp. 154–160. In Remote Sensing for Rangeland Monitoring and Management. Remote Sensing Society, Reading, England.

    Google Scholar 

  • Sing, A. (1987). Spectral separability of tropical forest classes. Int. J. Remote Sens. 8:971–979.

    Article  Google Scholar 

  • Taylor, W.P. (1934). Significance of extreme or intermittent conditions in distribution of species and management of natural resources, with a restatement of Leibig’s law of minimum. Ecology 15:374–379.

    Article  Google Scholar 

  • Tilman, D. (1982). Resource Competition and Community Structure. Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  • Tilman, D. (1988). Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton Univ. Press, Princeton, NJ.

    Google Scholar 

  • Townshend, J.R.G., and Justice, C.O. (1986). Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int. J. Remote Sens. 7:1435–1445.

    Article  Google Scholar 

  • Townshend, J.R.G., and Tucker, C.J. (1984). Objective assessment of advanced very high resolution radiometer data for land cover mapping. Int. J. Remote Sens. 5:497–504.

    Article  Google Scholar 

  • Tucker, C.J. (1980). Remote sensing of leaf water content in the near infrared. Remote Sens. Environ. 10:23–32.

    Article  Google Scholar 

  • Tucker, C.J. (1986). Maximum normalized difference vegetation index images for sub-Saharan Africa for 1983–1985. Int. J. Remote Sens. 7:1383–1384.

    Article  Google Scholar 

  • Tucker, C.J., Justice, C.O., and Prince, S.D. (1986). Monitoring the grasslands of the Sahel 1984–1985. Int. J. Remote Sens. 7:1715–1731.

    Article  Google Scholar 

  • Tucker, C.J., Townshend, J.R.G., and Goff, T.E. (1985a). African land-cover classification using satellite data. Science 227:369–375.

    Article  PubMed  CAS  Google Scholar 

  • Tucker, C.J., Vanpraet, C.L., Sharman, M.J., and Van Ittersum, G. (1985b) Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sens. Envir. 17:233–249.

    Article  Google Scholar 

  • Ustin, S.L., Adams, J.B., Elvidge, C.D., Rejmanek, M., Rock, B.N., Smith, M.O., Thomas, R.W., and Woodward, R.A. (1986). Thematic mapper studies of semiarid shrub communities. BioScience 36:446–456.

    Article  Google Scholar 

  • Walker, B.H. (1979). Management principles for semi-arid ecosystems, pp. 379–388. In B.H. Walker (ed.), Management of Semi-arid Ecosystems. Elsevier, Amsterdam, Netherlands.

    Google Scholar 

  • Walker, J., Jupp, D.L.B., Penridge, L.K., and Tian, G. (1986). Interpretation of vegetation structure in Landsat MSS imagery: A case study in disturbed semi-arid eucalypt woodlands. Part 1. Field data analysis. J. Envir. Manag. 23:19–33.

    Google Scholar 

  • Walsh, S.J. (1987). Variability of Landsat MSS spectral responses of forests in relation to stand and site characteristics. Int. J. Remote Sens. 8:1289–1299.

    Article  Google Scholar 

  • Wardley, N.W., Milton, E.J., and Hill, C.T. (1987). Remote sensing of structurally complex semi-natural vegetation—an example from heathland. Int. J. Remote Sens. 8:31–42.

    Article  Google Scholar 

  • Warren, P.L., and Huchinson, C.F. (1984). Indicators of rangeland change and their potential for remote sensing. J. Arid Envir. 7:107–126.

    Google Scholar 

  • Watt, A.S. (1981). A comparison of grazed and ungrazed grassland in East Anglian Breckland. J. Ecol. 69:509–536.

    Article  Google Scholar 

  • Weaver, R.E. (1987). Spectral separation of moorland vegetation in airborne Thematic Mapper data. Int. J. Remote Sens. 8:43–55.

    Article  Google Scholar 

  • Weismiller, R.A., Kristof, S.J., Scholtz, D.K., Anuta, P.E., and Momin, S.A. (1977). Change detection in coastal zone environments. Photogramm. Eng. Remote Sens. 43:1533–1539.

    Google Scholar 

  • West, D.C., Shugart, H.H., and Botkin, D.B. (eds.) (1981). Forest Succession Concepts and Application. Springer-Verlag, NY.

    Google Scholar 

  • Wickware, G.M., and Howarth, P.J. (1981). Change detection in the Peace-Athabasca Delta using digital Landsat data. Remote Sens. Envir. 11:9–25.

    Article  Google Scholar 

  • Williams, K., Hobbs, R.J., and Hamburg, S.P. (1987). Invasion of annual grassland in northern California by Baccharis pilularis ssp. consanguinea. Oecologia (Berlin) 72:461–465.

    Article  Google Scholar 

  • Yates, H., Strong, A., McGinnis, D., Jr., and Tarpley, D. (1986). Terrestrial observations from NOAA operational satellites. Science 231:463–470.

    Article  PubMed  CAS  Google Scholar 

  • Yool, S.R., Star, J.L., Estes, J.E., Botkin, D.B., Eckhardt, D.W. and Davis, F.W. (1986). Performance analysis of image processing algorithms for classification of natural vegetation in the mountains of southern California. Int. J. Remote Sens. 7:683–702.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Hobbs, R.J. (1990). Remote Sensing of Spatial and Temporal Dynamics of Vegetation. In: Hobbs, R.J., Mooney, H.A. (eds) Remote Sensing of Biosphere Functioning. Ecological Studies, vol 79. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3302-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3302-2_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7958-7

  • Online ISBN: 978-1-4612-3302-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics