Biomechanical Principles of Spinal Correction

  • Ronney L. Ferguson
  • Benjamin L. AllenJr.
  • Allan F. Tencer


The spine can be deformed by congenital, developmental, or traumatic events. The production, correction, and stabilization of spine deformities conforms to certain mechanical principles.1–4 These principles can be used in designing spinal implant systems, testing systems before their clinical use, evaluating failures, and devising methods of augmentation to prevent further failure, and aid basic decision-making processes. A comprehension of spinal biomechanics is therefore crucial to the treating physician.


Idiopathic Scoliosis Pelvic Fixation Spinal Implant Segmental Spinal Instrumentation Orthop Trans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schultz AB, Hirsch C. Mechanical analysis of Harrington rod correction of idiopathic scoliosis. J Bone Joint Surg 1973;55A:983–992.Google Scholar
  2. 2.
    Wenger DR, Carollo JJ, Wilkerson JA. Biomechanics of scoliosis correction by segmental spinal instrumentation. Spine 1982;7:260–264.PubMedCrossRefGoogle Scholar
  3. 3.
    White AA, III, Panjabi MM. The clinical biomechanics of scoliosis. Clin Orthop 1976;118:100–111.PubMedGoogle Scholar
  4. 4.
    White AA, III, Panjabi MM, Thomas CL. The clinical biomechanics of kyphotic deformities. Clin Orthop 1977;128:8–17.PubMedGoogle Scholar
  5. 5.
    Bone LB, Ashman RB, Roach JW, Johnston CE, II. Mechanical comparison of anterior spine instrumentation in a burst fracture model. Orthop Trans 1987;11:87.Google Scholar
  6. 6.
    Cool TA, Nasca RJ, Bidez MW, Lemons JE. Cyclic torsional testing with force-motion analysis of SSI and Harrington rod instrumentation. Orthop Trans 1986;10:8.Google Scholar
  7. 7.
    Ferguson RL, Tencer AF, Woodard P, Allen BL, Jr. Biomechanical comparisons of spinal fracture models and the stabilizing effects of posterior instrumentations. Spine 1988;13:453–460.PubMedCrossRefGoogle Scholar
  8. 8a.
    Gepstein R, Latta L, Shufflebarger HL. Cotrel-Dubousset instrumentation for lumbar burst fractures: a biomechanical study. Orthop Trans 1987;11:452.Google Scholar
  9. 8b.
    Asher MA, Strippgen WE. Anthropometric studies of the human sacrum relating to dorsal transsacral implant design. Clin Orthop 1986;203:58–62.PubMedGoogle Scholar
  10. 9.
    Herring JA, Ashman RB. Biomechanical testing of instruments for the fixation of spondylolisthesis. Orthop Trans 1987;11:98–99.Google Scholar
  11. 10.
    Jacobs RR, Nordwall A, Nachemson A. Reduction, stability and strength provided by internal fixation systems for thoracolumbar spinal injuries. Clin Orthop 1982;171:300.PubMedGoogle Scholar
  12. 11.
    Laborde JM, Bahniuk E, Bohlman HH, Samson B. Comparison of fixation of spinal fractures. Clin Orthop 1980; 152:303–310.PubMedGoogle Scholar
  13. 12.
    Mann KA, Found EM, Yuan HA, Lubicky JP, Fredrickson BE. Biomechanical evaluation of the effectiveness of anterior spinal fixation systems. Orthop Trans 1987;11:378.Google Scholar
  14. 13.
    McAfee PC, Werner FW, Glisson RR. A biomechanical analysis of spinal instrumentation systems in thoracolumbar fractures: comparison of traditional Harrington distraction instrumentation with segmental spinal instrumentation. Spine 1985;10:204–217.PubMedCrossRefGoogle Scholar
  15. 14.
    Mino DE, Stauffer ES, Davis PK, Hester J. Torsional loading of Harrington distraction rod instrumentation compared to segmental sublaminar and spinous process supplementation. Orthop Trans 1985;9:119.Google Scholar
  16. 15.
    Munson G, Satterlee C, Hammond S. Betten R, Gaines RW. Experimental evaluation of Harrington rod fixation supplemented with sublaminar wires in stabilizing thoracolumbar fracture-dislocations. Clin Orthop 1984;189:97.PubMedGoogle Scholar
  17. 16.
    Pinzur MS, Meyer PR, Lautenschlager EP, et al. Measurement of internal fixation device support in experimentally produced fractures of the dorsolumbar spine. Orthopaedics 1979;2:28–34.Google Scholar
  18. 17.
    Puno RM, Hartjen CA, von Fraunhofer JA, Holt RT, Johnson JR. Biomechanical analysis of the Cotrel-Dubousset spine instrumentation systems. Orthop Trans 1987;11:404.Google Scholar
  19. 18.
    Purcell GA, Markolf KL, Dawson EG. Twelfth thoracic-first lumbar vertebral mechanical stability of fractures after Harrington rod instrumentation. J Bone Joint Surg 1981;63A:71–78.Google Scholar
  20. 19.
    Ritterbusch JF, Ashman RB, Roach JW, Johnston CE, II, Birch JG, Herring JA. Biomechanical comparisons of spinal instrumentation systems. Orthop Trans 1987;11:87.Google Scholar
  21. 20.
    Stauffer ES, Neil JL. Biomechanical analysis of structural stability of internal fixation in fractures of the thoracolumbar spine. Clin Orthop 1975;112:159–164.PubMedGoogle Scholar
  22. 21.
    Ward JJ, Nasca RJ, Lemons JE. Cyclic torsional testing of Harrington and Luque spinal implants. Orthop Trans 1985;9:118.Google Scholar
  23. 22.
    Wenger DR, Carollo JJ, Wilkerson JA, Wauters K, Herring JA. Laboratory testing of segmental spinal instrumentation versus traditional Harrington instrumentation for scoliosis treatment. Spine 1982;7:265–269.PubMedCrossRefGoogle Scholar
  24. 23.
    Frankel VH, Nordin M. Basic biomechanics of the skeletal system. Philadelphia: Lea & Febiger, 1980.Google Scholar
  25. 24.
    Krag MH, Beynnon BD, Pope MH, Frymoyer JW, Haugh LD, Weaver DL. An internal fixator for posterior application to short segments of the thoracic, lumbar, or lumbosacral spine: design and testing. Clin Orthop 1986;203:75.PubMedGoogle Scholar
  26. 25.
    Lin HS, Liu YK, Adams KH. Mechanical response of the lumbar intervertebral joint under physiological (complex) loading. J Bone Joint Surg 1978;60A:41–55.Google Scholar
  27. 26.
    McNeice G. Biomechanics research of fracture fixation: application to the thoracolumbar spine. Report to the University of Texas Medical Branch, Galveston, Texas, 1983.Google Scholar
  28. 27.
    Roaf R. A study of the mechanics of spinal injuries. J Bone Joint Surg 1960;42B:810–823.Google Scholar
  29. 28a.
    Schultz A, Andersson G, Ortengren R, Haderspeck K, Nachemson A. Loads on the lumbar spine. J Bone Joint Surg 1982;64A:713–720.Google Scholar
  30. 28b.
    Ferguson RL, Allen BL, Jr. A mechanistic classification of thoracolumbar spine fractures. Clin Orthop 1984;189:77–88.PubMedGoogle Scholar
  31. 29.
    Self J, Tencer AF, Allen BL, Jr, Ferguson RL. Design of laminar attachment device for posterior spinal instrumentation. Spine 1989;(in press).Google Scholar
  32. 30.
    Waugh TR. Intravital measurements during instrumental correction of idiopathic scoliosis. Acta Orthop Scand (Suppl) 1966;93:1–87.Google Scholar
  33. 31.
    Zindrick MR, Wiltse LL, Doornik A, Widell EH, Knight GW, Pathwardhan A, Thomas JC. Analysis of the morpho-metric characteristics of the thoracolumbar pedicles. Orthop Trans 1987;11:98.Google Scholar
  34. 32.
    Jacobs RR, Schlaepfer F, Mathys R, et al. A new instrumentation system for fracture-dislocation of the dorsolumbar spine. Orthop Trans 1981;5:17–18.Google Scholar
  35. 33.
    Belytschko TB, Andriacchi TP, Schultz AB, Galante JO. Analog studies of forces in the human spine: computational techniques. J Biomech 1973;6:361–371.PubMedCrossRefGoogle Scholar
  36. 34.
    Schultz AB, Belytschko TB, Andriacchi TP. Analog studies of forces in the human spine: mechanical properties and motion segment behavior. J Biomech 1973;6:373–383.PubMedCrossRefGoogle Scholar
  37. 35.
    Dunn HK, Daniels AU. The mechanics of the surgical treatment of scoliosis. In: Black JA, Dubleton J, eds. Clinical Biomechanics: A Case History Approach. New York: Churchill Livingstone, 1981:335–358.Google Scholar
  38. 36.
    Ogilvie JW. Biomechanics. In: Moe’s Textbook of Scoliosis and Other Spinal Deformities. Philadelphia: Saunders, 1987;7–23.Google Scholar
  39. 37.
    Bradford DS, Lonstein JE, Moe JH, Ogilvie JW, Winter RB. Moe’s Textbook of Scoliosis and Other Spinal Deformities. Philadelphia: Saunders, 1987.Google Scholar
  40. 38.
    Dwyer AF. Experience of anterior correction of scoliosis. Clin Orthop 1973;93:191–206.PubMedCrossRefGoogle Scholar
  41. 39.
    Enneking WF, Harrington P. Pathologic changes in scoliosis. J Bone Joint Surg 1969;51A:165–184.Google Scholar
  42. 40.
    Nachemson A, Elfstrom G. Intravital wireless telemetry of axial forces in Harrington distraction rods in patients with idiopathic scoliosis. J Bone Joint Surg 1971;53A:445–465.Google Scholar
  43. 41.
    McAfee PC, Yuan HA, Fredrickson BE, Lubicky JP. The value of computed tomography in thoracolumbar fractures. An analysis of 100 consecutive cases and a new classification. J Bone Joint Surg 1983;65A:461–473.Google Scholar
  44. 42.
    Allen BL, Jr, Ferguson RL. Basic considerations in pelvic fixation cases. In: Segmental Spinal Instrumentation. ER Luque, ed. Thorofare, New Jersey: Charles B. Slack, Inc., 1984:185–220.Google Scholar
  45. 43.
    Dove J, Chan R, Ali MS. Biomechanics of segmental spinal wiring. Orthop Trans 1986;10:7–8.Google Scholar
  46. 44.
    Flatley TJ, Derderian H. Closed loop instrumentation of the lumbar spine. Clin Orthop 1985;196:273–278.PubMedGoogle Scholar
  47. 45.
    Goel VK, Nye TA, Clark CR, Nishiyama K, Weinstein J. Evaluation of an internal fixation device using the Selspot system—an application to the Luque closed loop system. Orthop Trans 1986;10:541.Google Scholar
  48. 46.
    Allen BL, Jr. Segmental spinal instrumentation with L-rods. AAOS: Instructional Course Lectures, Vol. 32, St. Louis. Mosby, 1983:202–208.Google Scholar
  49. 47.
    Allen BL, Jr. Biomechanical considerations in L-rod instrumentation. 19th Meeting of SRS Society, September 1984.Google Scholar
  50. 48.
    Allen BL, Jr, Ferguson RL. The Galveston technique for L-rod instrumentation of the scoliotic spine. Spine 1982;7:276–284.PubMedCrossRefGoogle Scholar
  51. 49.
    Kostuik JP. Indications for the use of the Halo immobilization. Clin Orthop 1981;154:46–50.PubMedGoogle Scholar
  52. 50.
    Drummond D, Guadagni J, Keene JS, Breed A, Narechania R. Interspinous process segmental spinal instrumentation. J Pediatr Orthop 1984;4:397–404.PubMedCrossRefGoogle Scholar
  53. 51.
    Georgette FS, Sander TW, Oh I. The fatigue resistance of orthopaedic wire and cable systems. Proceedings of the 10th Annual Society for Biomaterials Washington, DC, p 146, 1984.Google Scholar
  54. 52.
    Bryan WJ, Inglis AE, Sculco TP, Ranawat CS, Methylmethacrylate stabilization for enhancement of posterior cervical arthrodesis in rheumatoid arthritis. J Bone Joint Surg 1982;64A:1045–1050.Google Scholar
  55. 53.
    Dunn EJ. The role of methylmethacrylate in the stabilization and replacement of tumors of the cervical spine. Spine 1977;2:15–24.CrossRefGoogle Scholar
  56. 54.
    Dunn HK, Bolstad KE. Fixation of Dwyer screws for the treatment of scoliosis. J Bone Joint Surg 1977;59A:54–56.Google Scholar
  57. 55.
    Herron LD, Dawson EG. Methylmethacrylate as an adjunct in spinal instrumentation. J Bone Joint Surg 1977;59A:866–868.Google Scholar
  58. 56.
    Lange DR. The mechanical bonding of methylmethacrylate to cancellous bone. J Bone Joint Surg 1979;61A:254–256.Google Scholar
  59. 57.
    Wang GJ, Reger SI, Shao ZH, Morton CL, Stamp WG. Comparative strength of anterior spinal fixation with bone graft or polymethylmethacrylate. Clin Orthop 1984;188:303–308.PubMedGoogle Scholar
  60. 58.
    Zindrick MR, Patwardhan A, Lorenz M. The effect of methyl-methacrylate augmentation upon pedicle screw fixation in the spine. Orthop Trans 1986;10:540.Google Scholar
  61. 59.
    Hansebout RR, Blomquist GA, Jr. Acrylic spinal fusion. J Neurosurg 1980;53:606–612.PubMedCrossRefGoogle Scholar
  62. 60.
    McAfee PC, Bohlman HH. Complications following Harrington instrumentation for fractures of the thoracolumbar spine. J Bone Joint Surg 1985;67A:672–686.Google Scholar
  63. 61.
    Crowninshield R, Pope MH, Hoaglund FT. A comparison of the tensile properties of bone and polymethylmethacrylate. J Bone Joint Surg [Am] 1974;56A:865.Google Scholar
  64. 62.
    Taitsman JP, Saha S. Tensile strength of wire-reinforced bone cement and twisted stainless steel wire. J Bone Joint Surg 1977;59A:419–425.Google Scholar
  65. 63.
    Johnston CE, II, Ashman RB, Corin JD. Mechanical effects of cross-linking rods in Cotrel-Dubousset instrumentation. Orthop Trans 1987;11:96.Google Scholar
  66. 64.
    Akbarnia BA, Merenda JT, Keppler L, Gaines R, Lorenz M. Surgical treatment of fractures and fracture dislocations of the thoracolumbar and lumbar spine using pedicular screws and plate fixation. Orthop Trans 1987;11:228.Google Scholar
  67. 65.
    Reed S, Wagner T. Preliminary report on lumbosacral fusion with pedicle screws and Steffee plates. Orthop Trans 1987;11:99–100.Google Scholar
  68. 66.
    Steffee AD. Complete reduction of grade IV spondylolisthesis using segmental spine plates and transpedicular screws. Orthop Trans 1987;11:228.Google Scholar
  69. 67.
    Luque E. Indications for SSI sublaminar intrapeduncular. Orthop Trans 1987;11:501.Google Scholar
  70. 68.
    Luque ER. Transpedicular segmental correction and fixation. Orthop Trans 1986;10:5.Google Scholar
  71. 69.
    Andrew TA, Brooks S, Piggott H. Long-term follow-up evaluation of screw-and-graft fusion of the lumbar spine. Clin Orthop 1986;203:113–119.PubMedGoogle Scholar
  72. 70.
    Kornblatt MD, Casey MP, Jacobs RR. Internal fixation in-lumbosacral spine fusion. Clin Orthop 1986;203:141–150.PubMedGoogle Scholar
  73. 71.
    Liu YK, Njus GO, Singerman R. Improvement of the mechanical properties of pedicle screws used in spinal internal fixation. Orthop Trans 1986;10:540.Google Scholar
  74. 72.
    Zindrick MR, Wiltse LL, Holland WR, Widell EH, Thomas JC, Spencer CW. A biomechanical study of intrapedicular screw fixation in the lumbosacral spine. Clin Orthop 1986;203:99–112.PubMedGoogle Scholar
  75. 73.
    Kling TF, Jr, Vanderby R, Jr, Belloli DM, Thomsen EL. Cross-linked pedicle screw fixation in the same vertebral body: a biomechanical study. Orthop Trans 1987;11:98.Google Scholar
  76. 74.
    Highland TR, Chan DPK. The pedicle of the spinal column: its anatomy and application in spinal surgery. Orthop Trans 1986;10:4.Google Scholar
  77. 75.
    Asher M, Carson W, Heinig G, Strippgen W, Lark R, Arendt M, Hartley M. A modular spinal rod linkage system to provide rotational stability. Orthop Trans 1987;11:124.Google Scholar
  78. 76.
    Moseley C, Mosca V, Lawton L, Koreska J. Improved stability in segmental instrumentation of neuromuscular scoliosis. Orthop Trans 1986;10:5.Google Scholar
  79. 77.
    Dubousset J, Guillaumat M, Cotrel Y. Correction and fusion to the sacrum of pelvic obliquity with CD instrumentation in children and adults. Orthop Trans 1987;11:96.Google Scholar
  80. 78.
    Edwards CC. A new method for direct sacral fixation: rationale and clinical results. Orthop Trans 1986;10:541.Google Scholar
  81. 79.
    Edwards CC. Spinal screw fixation of the lumbar and sacral spine: Early results treating the first 50 cases. Orthop Trans 1987;11:99.Google Scholar
  82. 80.
    McCarthy RE, Dunn HK. Pelvic fixation around the sacral ala with the Luque system. Orthop Trans 1987;11:88.Google Scholar
  83. 81.
    Puno RM, Bechtold JE, Byrd JA, Winter RB, Ogilvie JW, Bradford DS. Biomechanical analysis of five techniques of fixation for the lumbosacral junction. Orthop Trans 1987;11:86.Google Scholar
  84. 82.
    Jacobs RR. Personal communication, 1982.Google Scholar
  85. 83.
    Galante J, Schultz A, Dewald RL, Ray RD. Forces acting in the Milwaukee brace on patients undergoing treatment for idiopathic scoliosis. J Bone Joint Surg 1970;52A:498–506.Google Scholar
  86. 84.
    Lumsden RM, Morris JM. An in vivo study of axial rotation and immobilization at the lumbosacral junction. J Bone Joint Surg 1968;50A:1591–1602.Google Scholar
  87. 85.
    Nagel DA, Koogle TA, Piziali RI, Perkash I. Stability of the upper lumbar spine following progressive disruptions and the application of individual internal and external fixation devices. J Bone Joint Surg 1981;63A:62–70.Google Scholar
  88. 86.
    Johnson RH, Hart DL, Simmons EF, Ramsby GR, Southwick WO. Cervical orthoses. J Bone Joint Surg 1977;59A:332–339.Google Scholar
  89. 87.
    Johnston CE, Ashman RB, Sherman MC. Mechanical consequences of rod contouring and residual scoliosis in sublaminar pelvic SSI. Orthop Trans 1986;10:5–6.Google Scholar
  90. 88.
    Calhoun J, McNeice G, Allen BL, Jr, Ferguson RL, Meek-Chilton J. An analysis of variables affecting segmental spinal instrumentation. Orthop Trans 1985;9:538.Google Scholar
  91. 89.
    Waugh TR. The biomechanical basis for the utilization of methylmethacrylate in the treatment of scoliosis. J Bone Joint Surg 1971;53A:194–195.Google Scholar
  92. 90.
    Ashman RB, Birch JG, Bone LB, Corin JD, Herring JA, Johnston CE, II, Ritterbush JF, Roach JW. Mechanical testing of spinal instrumentation. Clin Orthop 1988;227:113–125.PubMedGoogle Scholar
  93. 91.
    Denis F. The three-column spine and its significance in the classification of acute thoracolumbar spinal injuries. Spine 1983;8:817–831.PubMedCrossRefGoogle Scholar
  94. 92.
    Holdsworth F. Review article: fractures, dislocations, and fracture dislocations of the spine. J Bone Joint Surg 1970;52A:1534.Google Scholar
  95. 93.
    Winter RB, Lonstein JE, Vanden Brink K, Anderson MB. Harrington rod with sublaminar wires in the treatment of adolescent idiopathic scoliosis. A study of sagittal plane correction. Orthop Trans, 1987;11:89.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Ronney L. Ferguson
  • Benjamin L. AllenJr.
  • Allan F. Tencer

There are no affiliations available

Personalised recommendations