Skip to main content

Deposition of Metalliferous Sediment Beneath a Brine Pool in the Atlantis II Deep, Red Sea

  • Conference paper
Book cover Gorda Ridge

Abstract

The Atlantis II Deep in the central Red Sea is the site of formation of a large submarine hydrothermal sulfide deposit. It is the largest deposit discovered to date on the seafloor and the only site given serious consideration for economic exploitation in the near future. The metalliferous deposit in the Atlantis II Deep is very different from other known submarine massive sulfide deposits forming on seafloor spreading centers. The Atlantis II deposit is a thin, but laterally extensive, blanket of interlayered metal sulfide, oxide, and silicate minerals. The Atlantis II deposit is genetically and geochemically similar to the other oceanic ridge crest sulfide deposits in that it forms from a seawater-derived hydrothermal fluid which is modified by high-temperature interaction with oceanic crust. However, the presence of evaporite strata adjacent to the rift and a submarine brine pool in the Atlantis II Deep controls the fluid composition and depositional environment and determines the form of the deposit. The interplay of the hydrotermal system with the depositional environment is one of the critical variables that controls the form, composition, concentration, preservation, and economic potential of submarine exhalative mineral deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bäcker H (1976) Fazies und chemische Zusammensetzung rezenter Ausfällungen aus Mineralquellen im Roten Meer. Geolog Jahrb 17:151–172.

    Google Scholar 

  • Bäcker H, Richter H (1973) Die rezente hydrothermalsedimentäre Lagerstätte Atlantis-II-Tief in Roten Meer. Geol Rundsch 62:697–740.

    Article  Google Scholar 

  • Bäcker H, Schoell M (1972) New deeps with brines and metalliferous sediments in the Red Sea. Nature 240:153–158.

    Article  Google Scholar 

  • Bäcker H, Lange K, Richter H (1975) Morphology of the Red Sea central graben between Subair Islands and Abul Kizaan. Geol Jahrb 13:79–123.

    Google Scholar 

  • Bicknell JD, Macdonald KC, Miller SP, Lonsdale PF, Becker K (1986) Tectonics of the Nereus Deep, Red Sea: A deep-tow investigation of a site of initial rifting. Marine Geophys Res 8:131–148.

    Google Scholar 

  • Bignell R, Cronan D, Tooms J (1976) Metal dispersion in the Red Sea as an aid to marine geochemical exploration. Inst Mining Metallurgy Trans 8:B274–B278.

    Google Scholar 

  • Bischoff JL (1969) Red Sea geothermal brine deposits: Their mineralogy, chemistry, and genesis. In Degens ET, Ross DA (eds): Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York: Springer-Verlag, pp 368–401.

    Google Scholar 

  • Bischoff JL, Rosenbauer RJ, Aruscavage PJ, Baedecker PA, Crock JC (1983) Sea-floor massive sulfide deposits from 21° N, East Pacific Rise; Juan de Fuca Ridge; and Galapagos Rift: Bulk chemical composition and economic implications. Econ Geol 78:1711–1720.

    Article  Google Scholar 

  • Brewer GB, Spencer DW (1969) A note on the chemical composition of the Red Sea Brines. In Degens ET, Ross DA (eds): Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York: Springer-Verlag, pp 174–179.

    Google Scholar 

  • Cochran JR (1983) A model for development of Red Sea. Am Assoc Petroleum Geol Bull 67:41–69.

    Google Scholar 

  • Craig H (1969) Geochemistry and origin of the Red Sea brines. In Degens ET, Ross DA (ed): Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York: Springer-Verlag, pp 208–242.

    Google Scholar 

  • Danielsson L, Dyrssen D, Granéli A (1980) Chemical investigations of Atlantis II and Discovery brines in the Red Sea. Geochim Cosmochim Acta 44:2051–2065.

    Article  Google Scholar 

  • Davis EE, Goodfellow WD, Bornhold BD, et al. (1987) Massive sulfides in a sedimented rift valley, northern Juan de Fuca Ridge. Earth Planetary Sci Lett 86:49–61.

    Article  Google Scholar 

  • Delevaux MH, Doe BR (1974) Preliminary report on uranium, thorium and lead contents and lead isotopic composition in sediment samples from the Red Sea. Initial Reports of the Deep Sea Drilling Project, Vol 23, pp. 943–946.

    Google Scholar 

  • Dietrich G, Krause G (1969) The observations of the vertical structure of hot salty water by R.V. Meteor. In Degens ET, and Ross DA (eds): Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York: Springer-Verlag, pp 10–14.

    Google Scholar 

  • Guney M, Al-Marhoun MA, Nawab ZA (1988) Metalliferous submarine sediments of the Atlantis-II-Deep, Red Sea. Can Inst Mining Bull 81:33–39.

    Google Scholar 

  • Hackett J, Bischoff JL (1973) New data on the stratigraphy, extent, and geological history of the Red Sea geothermal deposits. Econ Geol 68:553–564.

    Article  Google Scholar 

  • Hartmann M (1973) Untersuchung von suspendiertem Material in den Hydrothermallaugen des Atlantis II-Tiefs. Geol Rundsch 62:742–754.

    Article  Google Scholar 

  • Hartmann M (1980) Atlantis II Deep geothermal brine system. Hydrographie situation in 1977 and changes since 1965. Deep-Sea Res 27A: 161–171.

    Article  Google Scholar 

  • Hartmann M (1985) Atlantis II Deep geothermal brine system. Chemical processes between hydrothermal brines and Red Sea Deep Water. Marine Geol 64:157–177.

    Article  Google Scholar 

  • Kaplan IR, Sweeney RE, Nissenbaum A (1969) Sulfur isotope studies on Red Sea geothermal brines and sediments. In Degens ET, Ross DA (eds): Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York: Springer-Verlag, pp 474–498.

    Google Scholar 

  • Koski RA, Lonsdale PF, Shanks WC, Berndt ME, Howe SS (1985) Mineralogy and geochemistry of a sediment-hosted hydrothermal sulfide deposit from the southern trough of Guaymas Basin, Gulf of California. J Geophys Res 90:6695–6707.

    Article  Google Scholar 

  • Koski RA, Shanks WC III, Bohrson WA, Oscarson RL (1988) The composition of massive sulfide deposits from the sediment-covered floor of the Escanaba Trough, Gorda Ridge: Implications for depositional processes. Can Mineral 26:655–673.

    Google Scholar 

  • Lupton JE, Weiss RF, Craig H (1977) Mantle helium in the Red Sea brines. Nature 266: 244–246.

    Article  Google Scholar 

  • Nawab ZA (1984) Red Sea mining: A new era. Deep Sea Res 31:813–822.

    Article  Google Scholar 

  • Oudin E (1987) Trace elements and precious metal concentrations in East Pacific Rise, Cyprus and Red Sea submarine sulfide deposits. In Teleki PG et al. (eds): Marine Minerals. Nordrecht: D. Reidel Publishing Company, pp. 349–362.

    Google Scholar 

  • Oudin E, Thisse Y, Ramboz C (1984) Fluid inclusion and mineralogical evidence for high-temperature saline hydrothermal circulation in the Red Sea metalliferous sediments: Preliminary results. Marine Mining 5:3–31.

    Google Scholar 

  • Pautot G, Guennoc P, Contelle A, Lyberis N (1984) Discovery of a large brine deep in the northern Red Sea. Nature 310:133–136.

    Article  Google Scholar 

  • Pottorf R, Barnes HL (1983) Mineralogy, geochemistry, and ore genesis of hydrothermal sediments from the Atlantis II Deep, Red Sea. Econ Geol Monogr 5:198–223.

    Google Scholar 

  • Ramboz C, Oudin E, Thisse Y (1988) Geyser-type discharge in Atlantis II Deep, Red Sea: Evidence of boiling from fluid inclusions in epigenetic anhydrite. Can Mineral 26:765–786.

    Google Scholar 

  • Schmalz RF (1969) Deep-water evaporite deposition: A genetic model. Am Assoc Petroleum Geol Bull 53:798–823.

    Google Scholar 

  • Schoell M (1976) Heating and convection within the Atlantis II Deep geothermal system of the Red Sea. In Proceedings, Second United Nations Symposium on the Development and Use of Geothermal Resources, Vol 1, pp 583–590.

    Google Scholar 

  • Schoell M, Faber E (1978) New isotopic evidence for the origin of Red Sea brines. Nature 275:436–438.

    Article  Google Scholar 

  • Schoell M, Hartmann M (1978) Changing hydrothermal activity in the Atlantis II Deep geothermal system. Nature 274:784–785.

    Article  Google Scholar 

  • Shanks WC III (1983) Economic and exploration significance of Red Sea metalliferous brine deposits. In Shanks WC III (ed): Unconventional Mineral Deposits. New York: American Institute of Mining Engineers, pp 157–171.

    Google Scholar 

  • Shanks WC III, Bischoff JL (1977) Ore transport and deposition in the Red Sea geothermal system: A geochemical model. Geochim Cosmochim Acta 41:1507–1519.

    Article  Google Scholar 

  • Shanks WC III, Bischoff JL (1980) Geochemistry, sulfur isotope composition and accumulation rates of the Red Sea geothermal deposits. Econ Geol 75:445–459.

    Article  Google Scholar 

  • Stoffers P, Kühn R (1974) Red Sea evaporites: A pétrographie and geochemical study. Initial Reports of the Deep Sea Drilling Project, Vol 23, pp. 821–847.

    Google Scholar 

  • Swallow JC (1969) History of exploration of the hot brine area of the Red Sea: Discovery account. In Degens ET, Ross DA Degens (eds): Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York: Springer-Verlag, pp 3–9.

    Google Scholar 

  • Von Damm KL, Edmond JM, Grant B, Measures CI, Walden B, Weiss RF (1985) Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochim Cosmochim Acta 49:2197–2221.

    Article  Google Scholar 

  • Von Damm KL, Bischoff JL (1987) Chemistry of hydrothermal solutions from the southern Juan de Fuca Ridge. Geophys Res 92:11,334–11,346.

    Google Scholar 

  • Watson SW, Waterbury JB (1969) The sterile hot brines of the Red Sea. In Degens ET, Ross DA (eds): Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York: Springer-Verlag, pp 272–281.

    Google Scholar 

  • Weber-Diefenbach K (1977) Geochemistry and diagenesis of recent heavy metal ore deposits at the Atlantis II Deep (Red Sea). In Klemm DD, Schneider HJ (eds): Time and Stratabound Ore Deposits. New York: Springer-Verlag, pp 419–436.

    Google Scholar 

  • Zierenberg RA, Shanks WC III (1983) Mineralogy and geochemistry of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea. Econ Geol 78:57–72.

    Article  Google Scholar 

  • Zierenberg RA, Shanks WC III (1986) Isotopic constraints on the origin of the Atlantis II, Suakin and Valdivia brines, Red Sea. Geochim Cosmochim Acta 50:2205–2214.

    Article  Google Scholar 

  • Zierenberg RA, Shanks WC III (1988) Isotopic studies of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea. Can Mineral 26:737–753.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this paper

Cite this paper

Zierenberg, R.A. (1990). Deposition of Metalliferous Sediment Beneath a Brine Pool in the Atlantis II Deep, Red Sea. In: McMurray, G.R. (eds) Gorda Ridge. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3258-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3258-2_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7937-2

  • Online ISBN: 978-1-4612-3258-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics