Gorda Ridge pp 131-142 | Cite as

Deposition of Metalliferous Sediment Beneath a Brine Pool in the Atlantis II Deep, Red Sea

  • Robert A. Zierenberg

Abstract

The Atlantis II Deep in the central Red Sea is the site of formation of a large submarine hydrothermal sulfide deposit. It is the largest deposit discovered to date on the seafloor and the only site given serious consideration for economic exploitation in the near future. The metalliferous deposit in the Atlantis II Deep is very different from other known submarine massive sulfide deposits forming on seafloor spreading centers. The Atlantis II deposit is a thin, but laterally extensive, blanket of interlayered metal sulfide, oxide, and silicate minerals. The Atlantis II deposit is genetically and geochemically similar to the other oceanic ridge crest sulfide deposits in that it forms from a seawater-derived hydrothermal fluid which is modified by high-temperature interaction with oceanic crust. However, the presence of evaporite strata adjacent to the rift and a submarine brine pool in the Atlantis II Deep controls the fluid composition and depositional environment and determines the form of the deposit. The interplay of the hydrotermal system with the depositional environment is one of the critical variables that controls the form, composition, concentration, preservation, and economic potential of submarine exhalative mineral deposits.

Keywords

Silicate Manganese Uranium Geochemistry Magnetite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bäcker H (1976) Fazies und chemische Zusammensetzung rezenter Ausfällungen aus Mineralquellen im Roten Meer. Geolog Jahrb 17:151–172.Google Scholar
  2. Bäcker H, Richter H (1973) Die rezente hydrothermalsedimentäre Lagerstätte Atlantis-II-Tief in Roten Meer. Geol Rundsch 62:697–740.CrossRefGoogle Scholar
  3. Bäcker H, Schoell M (1972) New deeps with brines and metalliferous sediments in the Red Sea. Nature 240:153–158.CrossRefGoogle Scholar
  4. Bäcker H, Lange K, Richter H (1975) Morphology of the Red Sea central graben between Subair Islands and Abul Kizaan. Geol Jahrb 13:79–123.Google Scholar
  5. Bicknell JD, Macdonald KC, Miller SP, Lonsdale PF, Becker K (1986) Tectonics of the Nereus Deep, Red Sea: A deep-tow investigation of a site of initial rifting. Marine Geophys Res 8:131–148.Google Scholar
  6. Bignell R, Cronan D, Tooms J (1976) Metal dispersion in the Red Sea as an aid to marine geochemical exploration. Inst Mining Metallurgy Trans 8:B274–B278.Google Scholar
  7. Bischoff JL (1969) Red Sea geothermal brine deposits: Their mineralogy, chemistry, and genesis. In Degens ET, Ross DA (eds): Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York: Springer-Verlag, pp 368–401.Google Scholar
  8. Bischoff JL, Rosenbauer RJ, Aruscavage PJ, Baedecker PA, Crock JC (1983) Sea-floor massive sulfide deposits from 21° N, East Pacific Rise; Juan de Fuca Ridge; and Galapagos Rift: Bulk chemical composition and economic implications. Econ Geol 78:1711–1720.CrossRefGoogle Scholar
  9. Brewer GB, Spencer DW (1969) A note on the chemical composition of the Red Sea Brines. In Degens ET, Ross DA (eds): Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York: Springer-Verlag, pp 174–179.Google Scholar
  10. Cochran JR (1983) A model for development of Red Sea. Am Assoc Petroleum Geol Bull 67:41–69.Google Scholar
  11. Craig H (1969) Geochemistry and origin of the Red Sea brines. In Degens ET, Ross DA (ed): Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York: Springer-Verlag, pp 208–242.Google Scholar
  12. Danielsson L, Dyrssen D, Granéli A (1980) Chemical investigations of Atlantis II and Discovery brines in the Red Sea. Geochim Cosmochim Acta 44:2051–2065.CrossRefGoogle Scholar
  13. Davis EE, Goodfellow WD, Bornhold BD, et al. (1987) Massive sulfides in a sedimented rift valley, northern Juan de Fuca Ridge. Earth Planetary Sci Lett 86:49–61.CrossRefGoogle Scholar
  14. Delevaux MH, Doe BR (1974) Preliminary report on uranium, thorium and lead contents and lead isotopic composition in sediment samples from the Red Sea. Initial Reports of the Deep Sea Drilling Project, Vol 23, pp. 943–946.Google Scholar
  15. Dietrich G, Krause G (1969) The observations of the vertical structure of hot salty water by R.V. Meteor. In Degens ET, and Ross DA (eds): Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York: Springer-Verlag, pp 10–14.Google Scholar
  16. Guney M, Al-Marhoun MA, Nawab ZA (1988) Metalliferous submarine sediments of the Atlantis-II-Deep, Red Sea. Can Inst Mining Bull 81:33–39.Google Scholar
  17. Hackett J, Bischoff JL (1973) New data on the stratigraphy, extent, and geological history of the Red Sea geothermal deposits. Econ Geol 68:553–564.CrossRefGoogle Scholar
  18. Hartmann M (1973) Untersuchung von suspendiertem Material in den Hydrothermallaugen des Atlantis II-Tiefs. Geol Rundsch 62:742–754.CrossRefGoogle Scholar
  19. Hartmann M (1980) Atlantis II Deep geothermal brine system. Hydrographie situation in 1977 and changes since 1965. Deep-Sea Res 27A: 161–171.CrossRefGoogle Scholar
  20. Hartmann M (1985) Atlantis II Deep geothermal brine system. Chemical processes between hydrothermal brines and Red Sea Deep Water. Marine Geol 64:157–177.CrossRefGoogle Scholar
  21. Kaplan IR, Sweeney RE, Nissenbaum A (1969) Sulfur isotope studies on Red Sea geothermal brines and sediments. In Degens ET, Ross DA (eds): Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York: Springer-Verlag, pp 474–498.Google Scholar
  22. Koski RA, Lonsdale PF, Shanks WC, Berndt ME, Howe SS (1985) Mineralogy and geochemistry of a sediment-hosted hydrothermal sulfide deposit from the southern trough of Guaymas Basin, Gulf of California. J Geophys Res 90:6695–6707.CrossRefGoogle Scholar
  23. Koski RA, Shanks WC III, Bohrson WA, Oscarson RL (1988) The composition of massive sulfide deposits from the sediment-covered floor of the Escanaba Trough, Gorda Ridge: Implications for depositional processes. Can Mineral 26:655–673.Google Scholar
  24. Lupton JE, Weiss RF, Craig H (1977) Mantle helium in the Red Sea brines. Nature 266: 244–246.CrossRefGoogle Scholar
  25. Nawab ZA (1984) Red Sea mining: A new era. Deep Sea Res 31:813–822.CrossRefGoogle Scholar
  26. Oudin E (1987) Trace elements and precious metal concentrations in East Pacific Rise, Cyprus and Red Sea submarine sulfide deposits. In Teleki PG et al. (eds): Marine Minerals. Nordrecht: D. Reidel Publishing Company, pp. 349–362.Google Scholar
  27. Oudin E, Thisse Y, Ramboz C (1984) Fluid inclusion and mineralogical evidence for high-temperature saline hydrothermal circulation in the Red Sea metalliferous sediments: Preliminary results. Marine Mining 5:3–31.Google Scholar
  28. Pautot G, Guennoc P, Contelle A, Lyberis N (1984) Discovery of a large brine deep in the northern Red Sea. Nature 310:133–136.CrossRefGoogle Scholar
  29. Pottorf R, Barnes HL (1983) Mineralogy, geochemistry, and ore genesis of hydrothermal sediments from the Atlantis II Deep, Red Sea. Econ Geol Monogr 5:198–223.Google Scholar
  30. Ramboz C, Oudin E, Thisse Y (1988) Geyser-type discharge in Atlantis II Deep, Red Sea: Evidence of boiling from fluid inclusions in epigenetic anhydrite. Can Mineral 26:765–786.Google Scholar
  31. Schmalz RF (1969) Deep-water evaporite deposition: A genetic model. Am Assoc Petroleum Geol Bull 53:798–823.Google Scholar
  32. Schoell M (1976) Heating and convection within the Atlantis II Deep geothermal system of the Red Sea. In Proceedings, Second United Nations Symposium on the Development and Use of Geothermal Resources, Vol 1, pp 583–590.Google Scholar
  33. Schoell M, Faber E (1978) New isotopic evidence for the origin of Red Sea brines. Nature 275:436–438.CrossRefGoogle Scholar
  34. Schoell M, Hartmann M (1978) Changing hydrothermal activity in the Atlantis II Deep geothermal system. Nature 274:784–785.CrossRefGoogle Scholar
  35. Shanks WC III (1983) Economic and exploration significance of Red Sea metalliferous brine deposits. In Shanks WC III (ed): Unconventional Mineral Deposits. New York: American Institute of Mining Engineers, pp 157–171.Google Scholar
  36. Shanks WC III, Bischoff JL (1977) Ore transport and deposition in the Red Sea geothermal system: A geochemical model. Geochim Cosmochim Acta 41:1507–1519.CrossRefGoogle Scholar
  37. Shanks WC III, Bischoff JL (1980) Geochemistry, sulfur isotope composition and accumulation rates of the Red Sea geothermal deposits. Econ Geol 75:445–459.CrossRefGoogle Scholar
  38. Stoffers P, Kühn R (1974) Red Sea evaporites: A pétrographie and geochemical study. Initial Reports of the Deep Sea Drilling Project, Vol 23, pp. 821–847.Google Scholar
  39. Swallow JC (1969) History of exploration of the hot brine area of the Red Sea: Discovery account. In Degens ET, Ross DA Degens (eds): Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York: Springer-Verlag, pp 3–9.Google Scholar
  40. Von Damm KL, Edmond JM, Grant B, Measures CI, Walden B, Weiss RF (1985) Chemistry of submarine hydrothermal solutions at 21°N, East Pacific Rise. Geochim Cosmochim Acta 49:2197–2221.CrossRefGoogle Scholar
  41. Von Damm KL, Bischoff JL (1987) Chemistry of hydrothermal solutions from the southern Juan de Fuca Ridge. Geophys Res 92:11,334–11,346.Google Scholar
  42. Watson SW, Waterbury JB (1969) The sterile hot brines of the Red Sea. In Degens ET, Ross DA (eds): Hot Brines and Recent Heavy Metal Deposits in the Red Sea. New York: Springer-Verlag, pp 272–281.Google Scholar
  43. Weber-Diefenbach K (1977) Geochemistry and diagenesis of recent heavy metal ore deposits at the Atlantis II Deep (Red Sea). In Klemm DD, Schneider HJ (eds): Time and Stratabound Ore Deposits. New York: Springer-Verlag, pp 419–436.Google Scholar
  44. Zierenberg RA, Shanks WC III (1983) Mineralogy and geochemistry of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea. Econ Geol 78:57–72.CrossRefGoogle Scholar
  45. Zierenberg RA, Shanks WC III (1986) Isotopic constraints on the origin of the Atlantis II, Suakin and Valdivia brines, Red Sea. Geochim Cosmochim Acta 50:2205–2214.CrossRefGoogle Scholar
  46. Zierenberg RA, Shanks WC III (1988) Isotopic studies of epigenetic features in metalliferous sediment, Atlantis II Deep, Red Sea. Can Mineral 26:737–753.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1990

Authors and Affiliations

  • Robert A. Zierenberg

There are no affiliations available

Personalised recommendations