Skip to main content

Models of Neural Responsiveness to Electrical Stimulation

  • Chapter
Cochlear Implants

Abstract

In principle, electrical stimulation of the cochlea is a simple process. Intracochlear electrodes, when stimulated, create electrical field patterns within the cochlea. In the vicinity of the neural elements, these fields appear as extracellular voltage gradients or profiles that are continuous along the entire length of the neurons. These extracellular voltage fields produce current flow into and out of the neural elements depending on the local impedances of the neural membranes. If the neural elements are sufficiently depolarized, action potentials are generated that propagate along each cell’s axon to the cochlear nucleus. Globally these events occur simultaneously, but in varying degree, across a population of nerve cells, producing a group or ensemble of neural responses to the stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Békésy, G. von (1951). The course pattern of the electrical resistance in the cochlea of the guinea pig (electro-anatomy of the cochlea). J. Acoust. Soc. Am. 23:18-28. Reprinted in Experiments in Hearing, by G. von Bekesy ( McGraw- Hill, New York ), 1960, pp. 684–703.

    Google Scholar 

  • Black, R.C., and Clark, G.M. (1980). Differential electrical excitation of the auditory nerve. J. Acoust. Soc. Am. 67: 868–874.

    Article  PubMed  CAS  Google Scholar 

  • Cannon, M.W., Jr. (1976). Electrical impedances, current pathways and voltage sources in the guinea pig cochlea. Institute for Sensory Research Report ISR-S-14, Syracuse University, Syracuse, N.Y.

    Google Scholar 

  • Coburn, B. (1980). Electrical stimulation of the spinal cord: Two-dimensional finite element analysis with particular reference to epidural electrodes. Med. Biol. Eng. Comp. 18: 573–584.

    Article  CAS  Google Scholar 

  • Colombo, J., and Parkins, C.W. (1987). A model of electrical excitation of the mammalian auditory-nerve neuron. Hearing Res. 31: 287–312.

    Article  CAS  Google Scholar 

  • Finley, C.C., and Wilson, B.S. (1985). An integrated field-neuron model of electrical stimulation by intracochlear scala tympani electrodes. Abstracts of the 8th Midwinter Research Meeting of the Association for Research in Otolaryngology, pp. 105–106.

    Google Scholar 

  • Finley, C.C., Wilson, B.S., and White, M.W. (1987). A finite-element model of bipolar field patterns in the electrically stimulated cochlea—A two-dimensional approximation. Proceedings of the Ninth Annual Conference of the IEEE Engineering in Medicine and Biology Society, Boston, pp. 1901–1903.

    Google Scholar 

  • Frankenhaeuser, B., and Huxley, A.F. (1964). The action potential in the myelinated nerve fiber of Xenopus laevis as computed on the basis of voltage clamp data. J. Physiol. (London) 171: 302–315.

    CAS  Google Scholar 

  • Grizon, G. (1987). Investigation of current flow in the inner ear during electrical stimulation of intracochlear electrodes. MS thesis in EE CS, MIT, Cambridge, Mass.

    Google Scholar 

  • Hinojosa, R., and Marion, M. (1983). Histopathology of profound sensorineural deafness. Ann. N.Y. Acad. Sci. 405: 459–484.

    Article  PubMed  CAS  Google Scholar 

  • Honrubia, V., Strelioff, D., and Sitko, S. (1974). Electroanatomy of the cochlea: Its role in cochlear potential measurements. Proceedings of the International Congress in Electrocochleography, Bronx, N.Y.

    Google Scholar 

  • Javel, E., Tong, Y.C., Shepherd, R.K., and Clark, G.M. (1987). Responses of cat auditory nerve fibers to biphasic electrical current pulses. Ann. Otol. Rhinol. Laryngol. 96, Suppl. 128: 26–30.

    Google Scholar 

  • Johnstone, B.M., Johnstone, J.R., and Pugsley, I.D. (1966). Membrane resistance in endolymphatic walls of the first turn of the guinea-pig cochlea. J. Acoust. Soc. Am. 40: 1398–1404.

    Article  PubMed  CAS  Google Scholar 

  • Laurence, M. (1980). Factors in the continuing development of auditory prostheses. In Controversies in Otolaryngology, edited by J.B. Snow ( Saunders, Philadelphia ), pp. 433–442.

    Google Scholar 

  • Leake-Jones, P.A., and Rebscher, S.J. (1983). Cochlear pathology with chronically implanted scala tympani electrodes. Ann. N.Y. Acad. Sci. 405: 203–223.

    Article  PubMed  CAS  Google Scholar 

  • Liberman, M.C., and Oliver, M.E. (1984). Morphometry of intracellularly labeled neurons of the auditory nerve: Correlations with functional properties. J. Comp. Neurol. 223: 163–176.

    Article  PubMed  CAS  Google Scholar 

  • Loeb, G.E., Byers, C.L., Rebscher, S.J., Casey, D.E., Fong, M.M., Schindler, R.A., Gray, R.F., and Merzenich, M.M. (1983). Design and fabrication of an experimental cochlear prosthesis. Med. Biol. Eng. Compt. 21: 241–254.

    Article  CAS  Google Scholar 

  • McNeal, D.R. (1976). Analysis of a model for excitation of myelinated nerve. IEEE BME 23 (4): 329–337.

    Article  CAS  Google Scholar 

  • Merzenich, M.M., and White, M.W. (1977). Cochlear implant. The interface problem. Biomed. Eng. Instrum. Funct. Electr. Stimul. 3: 321–340.

    Google Scholar 

  • Miller, C.E., and Henriquez, C.S. (1988). Three-dimensional finite element solution for biopotentials: Erythrocyte in an applied field. IEEE ’ BME 35 (9): 712–718.

    Article  CAS  Google Scholar 

  • Misrahy, G.A., Hildreth, K.M., Shinabarger, E.W., and Gannon, W.J. (1958). Electrical properties of the wall of the endolymphatic space of the cochlea (guinea pig). Am. J. Physiol. 194: 396–402.

    PubMed  CAS  Google Scholar 

  • Patrick, J.F., Crosby, P.A., Hirshorn, M.S., Kuzma, J.A., Money, D.K., Ridler, J., and Seligman, P.M. (1985). Australian multi-channel implantable hearing prosthesis. In Cochlear Implants, edited by R.A. Schindler and M.M. Merzenich ( Raven Press, New York ), pp. 93–100.

    Google Scholar 

  • Pernkopf, E. (1960). Topographische Anatomie des Menschen IV. Band: Topographische and stratigraphische Anatomie des Kopfes. Zweite Halfte, Urban and Schwarzenberg, Berlin, p 599. (Note: 3rd English edition published in 1989 by Urban and Schwarzenberg, Baltimore-Munich).

    Google Scholar 

  • Ranck, J.B. (1975). Which elements are excited in electrical stimulation of mammalian central nervous system: A review. Brain Res. 98: 417–440.

    Article  PubMed  Google Scholar 

  • Rattay, F. (1986). Analysis of models for external stimulation of axons. IEEE BME 33 (10): 974–977.

    Article  CAS  Google Scholar 

  • Rattay, F. (1987). Ways to approximate current-distance relations for electrically stimulated fibers. J. Theor. Biol. 125: 339–349.

    Article  PubMed  CAS  Google Scholar 

  • Reilly, J.P., Freeman, V.T., and Larkin, W.D. (1985). Sensory effects of transient electrical stimulation—Evaluation with a neuroelectric model. IEEE BME 32 (12): 1001–1011.

    Article  CAS  Google Scholar 

  • Reilly, J.P., and Bauer, R.H. (1987). Application of a neuroelectric model to electrocutaneous sensory sensitivity: Parameter variation study. IEEE BME 34 (9): 752–754.

    Article  CAS  Google Scholar 

  • Rubinstein, J.T., Soma, M., and Spelman, F.A. (1985). Mixed boundary value problem in the implanted cochlea: An analytical model of a cylindrical banded electrode array. IEEE 17 th Conf. EMBS, 1120–1123.

    Google Scholar 

  • Shepherd, R.K., Clary, G.M., Pyman, B.C., and Webb, R.L. (1985). The banded intracochlear electrode array: An evaluation of insertion trauma. Ann. Otol. Rhinol. Laryngol. 94: 55–59.

    PubMed  CAS  Google Scholar 

  • Sitko, S. (1976). Electrical network properties of the guinea pig cochlea. Doctoral dissertation, University of California, San Diego, Calif.

    Google Scholar 

  • Soma, M., Spelman, F.A., and Rubinstein, J.T. (1984). Fields produced by the cochlear prosthesis: The ear as a multilayered medium. IEEE Frontiers of Engineering Computing in Health Care, pp. 401–405.

    Google Scholar 

  • Spelman, F.A., Clopton, B.M., and Pfingst, B.E. (1982). Tissue impedance and current flow in the implanted ear. Implications for the cochlear prosthesis. Ann. Otol. Rhinol. Laryngol. Suppl. 98, 91: 3–8.

    PubMed  CAS  Google Scholar 

  • Spelman, F.A., and Clopton, B.M. (1987). Measurement of the specific impedance of bony tissues in the guinea pig cochlea. Abstracts of the 10th Midwinter Research Meeting of the Association for Research in Otolaryngology, #41.

    Google Scholar 

  • Strelioff, D. (1973). A computer simulation of the generation and distribution of cochlear potentials. J. Acoust. Soc. Am. 54: 620–629.

    Article  PubMed  CAS  Google Scholar 

  • Stypulkowski, P.H., and van den Honert, C. (1984). Physiological properties of the electrically stimulated auditory nerve. I. Compound action potential recordings. Hearing Res. 14: 205–223.

    Article  CAS  Google Scholar 

  • Sweeney, J.D., Mortimer, J.J., and Durand, D. (1987). Modeling of mammalian myelinated nerve for functional neuromuscular stimulation. Proceedings of the Ninth Annual Conference of the IEEE Engineering in Medicine and Biology Society, Boston, p. 1577.

    Google Scholar 

  • van den Honert, C., and Stypulkowski, P.H. (1987a). Single fiber mapping of spatial excitation patterns in the electrically stimulated auditory nerve. Hearing Res. 29: 195–206.

    Article  Google Scholar 

  • van den Honert, C., and Stypulkowski, P.H. (1987b). Temporal response patterns of single auditory nerve fibers elicited by periodic electrical stimuli. Hearing Res. 29: 207–222.

    Article  Google Scholar 

  • Verveen, A.A., and Derksen, H.E. (1968). Fluctuation phenomena in nerve membrane. Proc. IEEE 56: 906–916.

    Article  Google Scholar 

  • White, M.W., Finley, C.C., and Wilson, B.S. (1987). Electrical stimulation model of the auditory nerve: Stochastic response characteristics. Proceedings of the Ninth Annual Conference of the IEEE Engineering in Medicine and Biology Society, Boston, pp. 1906–1907.

    Google Scholar 

  • Wilson, B.S., and Finley, C.C. (1984). Speech processors for auditory prostheses. 2nd-4th Quarter Progress Reports. Contract NOl-NS-3-2356, NINCDS, NIH.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Verlag New York Inc.

About this chapter

Cite this chapter

Finley, C.C., Wilson, B.S., White, M.W. (1990). Models of Neural Responsiveness to Electrical Stimulation. In: Miller, J.M., Spelman, F.A. (eds) Cochlear Implants. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3256-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3256-8_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7936-5

  • Online ISBN: 978-1-4612-3256-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics