Skip to main content

Electrical Characteristics of Cochlear Tissues

  • Chapter
Cochlear Implants
  • 181 Accesses

Abstract

In the normal cochlea, the physical dimensions of the inner hair cell itself largely determine the degree of localization of sensory excitation. That is, with a few notable exceptions, the discharge patterns evoked on a primary auditory-nerve fiber by a wide range of sounds, including speech syllables, can be satisfactorily accounted for using only the mechanical vibrations thought to exist at the location of the single hair cell with which the fiber synapses, and the transducing and synaptic mechanisms of that cell (e.g., Deng and Geisler, 1987). Possible exceptions to this generality are the double-peaked discharge patterns sometimes evoked by low- frequency sinusoids (e.g., Sellick, Patuzzi, and Johnstone, 1982, but see Mountain and Cody, 1988, for an opposing view) and the effects of efferent stimulation (e.g., Guinan and Guifford, 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Békésy, G. von (1951). The coarse pattern of the electrical resistance in the cochlea of the guinea pig (electro-anatomy of the cochlea). J. Acoust. Soc. Am. 23:18–28. Reprinted in Experiments in Hearing, by G. von Békésy ( McGraw-Hill, New York ), 1960, pp. 654–672.

    Google Scholar 

  • Black, R.C., and Clark, G.M. (1980). Differential electrical excitation of the auditory nerve. J. Acoust. Soc. Am. 67: 868–874.

    Article  PubMed  CAS  Google Scholar 

  • Brownell, W.E., Zidanic, M., and Spirou, G.A. (1986). Standing currents and their modulation in the cochlea. In Neurobiology of Hearing: The Cochlea, edited by R.A. Altschuler, D.W. Hoffman, and R.P. Bobbin ( Raven Press, New York ), pp. 91–107.

    Google Scholar 

  • Cannon, M.W., Jr. (1976). Electrical impedances, current pathways and voltage sources in the guinea pig cochlea. Institute for Sensory Research Report ISR-S-14, Syracuse University, Syracuse, N.Y.

    Google Scholar 

  • Cheatham, M.A., and Dallos, P. (1984). Summating potential (SP) tuning curves. Hearing Res. 16: 189–200.

    Article  CAS  Google Scholar 

  • Dallos, P. (1983). Some electrical circuit properties of the organ of Corti. I. Analysis without reactive elements. Hearing Res. 12: 89–119.

    Article  CAS  Google Scholar 

  • Davis, H. (1958). A mechano-electrical theory of cochlear action. Ann. Otol. Rhinol. Laryngol. 67: 789–801.

    PubMed  CAS  Google Scholar 

  • Deng, L., and Geisler, C.D. (1987). A composite auditory model for processing speech sounds. J. Acoust. Soc. Am. 82: 2001–2012.

    Article  PubMed  CAS  Google Scholar 

  • Finley, C.C., Wilson, B.S., and White, M.W. (1987). A finite-element model of bipolar field patterns in the electrically stimulated cochlea—A two-dimensional approximation. Proceedings of the Ninth Annual Conference of the IEEE Engineering in Medicine and Biology Society, Boston, pp. 1901–1903.

    Google Scholar 

  • Garcia, P., and Clopton, B.M. (1987). Radial current flow and source density in the basal scala tympani. Hearing Res. 31: 55–64.

    Article  CAS  Google Scholar 

  • Geisler, C.D., Mountain, D.C., Hubbard, A.E., Adrian, H.O., and Ravindran, A. (1977). Alternating electrical-resistance changes in the guinea-pig cochlea caused by acoustic stimulation. J. Acoust. Soc. Am. 61: 1557–1566.

    Article  PubMed  CAS  Google Scholar 

  • Guinan, J.J., Jr., and Gifford, M.L. (1988). Effects of electrical stimulation of efferent olivocochlear neurons on cat auditory-nerve fibers. II. Spontaneous rate. Hearing Res. 33: 115–128.

    Article  Google Scholar 

  • Hudspeth, A.J., and Corey, D.P. (1977). Sensitivity, polarity, and conductance 2. Electrical Characteristics of Cochlear Tissues 15 change in the response of vertebrate hair cells to controlled mechanical stimuli. Proc. Natl. Acad. Sci. 74: 2407–2411.

    Article  PubMed  CAS  Google Scholar 

  • Johnstone, B.M., Johnstone, J.R., and Pugsley, I.O. (1966). Membrane resistance in endolymphatic walls of the first turn of the guinea pig cochlea. J. Acoust. Soc. Am. 40: 1398–1404.

    Article  PubMed  CAS  Google Scholar 

  • Liberman, M.C. (1982). The cochlear frequency map for the cat: Labeling auditory-nerve fibers of known characteristic frequency. J. Acoust. Soc. Am. 72: 1441–1449.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich, M.M., and Reid, M.D. (1974). Representation of the cochlea within the inferior colliculus of the cat. Brain Res. 77: 397–416.

    Article  PubMed  CAS  Google Scholar 

  • Merzenich, M.M., and White, M.W. (1977). Cochlear implant: The interface problem. In Functional Electrical Stimulation, edited by J. Resnick and T. Hambrecht ( Marcel Dekker, New York ), pp. 321–340.

    Google Scholar 

  • Merzenich, M.M., and White, M.W. (1977). Cochlear implant: The interface problem. In Functional Electrical Stimulation, edited by J. Resnick and T. Hambrecht ( Marcel Dekker, New York ), pp. 321–340.

    Google Scholar 

  • Robertson, D., Cody, A.R., Bredberg, G., and Johnstone, B.M. (1980). Response properties of spiral ganglion neurons in cochleas damaged by direct mechanical trauma. J. Acoust. Soc. Am. 67: 1295–1303.

    Article  PubMed  CAS  Google Scholar 

  • Russell, I.J. (1983). Origin of the receptor potential in inner hair cells of the mammalian cochlea—Evidence for Davis’ theory. Nature 301: 334–336.

    Article  PubMed  CAS  Google Scholar 

  • Sellick, P.M., Patuzzi, R., and Johnstone, B.M. (1982). Modulation of responses of spiral ganglion cells in the guinea pig cochlea by low frequency sound. Hearing Res. 7: 199–221.

    Article  CAS  Google Scholar 

  • Spelman, F.A., Clopton, B.M., and Suesserman, M.F. (1987). Measurements of the resistivity of bony tissues of the cochlea. Proceedings of the Ninth Annual Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1911–1912.

    Google Scholar 

  • Strelioff, D. (1973). A computer simulation of the generation and distribution of cochlear potentials. J. Acoust. Soc. Am. 54: 620–629.

    Article  PubMed  CAS  Google Scholar 

  • van den Honert, C., and Stypulkowski, P.H. (1984). Physiological properties of the electrically stimulated auditory nerve II. Single fiber recordings. Hearing Res. 14: 225–243.

    Article  Google Scholar 

  • van den Honert, C., and Stypulkowski, P.H. (1987). Single fiber mapping of spatial excitation patterns in the electrically stimulated auditory nerve. Hearing Res. 29: 195–206.

    Article  Google Scholar 

  • Wilson, B.S., and Finley, C.C. (1984). Fifth Quarterly Progress Report, NIH Contract N01-NS-2356, Research Triangle Institute, North Carolina.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Verlag New York Inc.

About this chapter

Cite this chapter

Geisler, C.D. (1990). Electrical Characteristics of Cochlear Tissues. In: Miller, J.M., Spelman, F.A. (eds) Cochlear Implants. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3256-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3256-8_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7936-5

  • Online ISBN: 978-1-4612-3256-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics