Skip to main content

Psychophysical Constraints on Biophysical/Neural Models of Threshold

  • Chapter
Cochlear Implants

Abstract

Models of cochlear prosthesis function serve the purpose of specifying preferably in a mathematically tractable fashion, the relationship between the physical parameters of electrical stimulation and the psychophysical behavior of the subject. Given a perfect model, we should be ablet assign values to all relevant parameters of electrical stimulation and accurately predict the resulting psychophysical behavior. Two classes of models may be considered: phenomenological “black-box” models which make no assumptions about the intervening variables but simply try to characterize the relationship between the physical variables and the psychophysical behavior, and biophysical/neural models which attempt to specify the mechanisms that link the physical stimus to the behavior. In both classes of models, psychophysics plays the role of specifying values that the model must predict. In the case of biophysical/neural models, it may play the additional role of helping estimate to what extent the possible intervening variables influence the behavior. Table 11.1 lists some of the variables that may be considered in formulating a biophysical/neural model of electrical stimulation of the cochlea.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson, D.J., Clopton, B.M., and Kipke, D. (1987). Signal processing of thin film neural recording array data to separate channels of point process information. Proc. 9th IEEE Eng. Med. Biol. Soc. Conf. 2: 743–744.

    Google Scholar 

  • Biitikofer, R., and Lawrence, P.D. (1979). Electrocutaneous nerve stimulation—II: Stimulus waveform selection. IEEE Trans. Biomed. Eng. BME 26: 69–75.

    Article  Google Scholar 

  • Clopton, B.M., Spelman, F.A., Glass, I., Pfingst, B.E., Miller, J.M., Lawrence, P.D., and Dean, D.P. (1983). Neural encoding of electrical signals. Ann. N.Y. Acad. Sci. 405: 146–158.

    Article  PubMed  CAS  Google Scholar 

  • Colombo, J., and Parkins,. C.W. (1987). A model of electrical excitation of the mammalian auditory nerve neuron. Hearing Res. 31: 287–312

    Article  CAS  Google Scholar 

  • Dobie, R.A., and Dillier, N. (1985). Some aspects of temporal coding for single-channel electrical stimulation of the cochlea. Hearing Res. 18: 41–56.

    Article  CAS  Google Scholar 

  • Eddington, D.K., Dobelle, W.H., Brackmann, D.E., Mladejovsky, M.G., and Parkin, J.L. (1978). Auditory prosthesis research with multiple channel intracochlear stimulation in man. Ann. Otol. Rhinol. Laryngol. (St. Louis) Suppl 53, 87: 1–39.

    PubMed  CAS  Google Scholar 

  • Gerstein, G.L., Bloom, M.J., Espinosa, I.E., and Evanczuk, S. (1983). Design of a laboratory for multineuron studies. IEEE Trans. Systems Man Cyber. SMC 13: 668–676.

    Google Scholar 

  • Hartmann, R., Topp, G., and Klinke, R. (1984). Discharge patterns of cat primary auditory fibers with electrical stimulation of the cochlea. Hearing Res. 13: 47–62.

    Article  CAS  Google Scholar 

  • Hinojosa, R., and Marion, M. (1983). Histopathology of profound sensorineural deafness. Ann. N.Y. Acad. Sci. 405: 459–484.

    Article  PubMed  CAS  Google Scholar 

  • Johnsson, L.G., Hawkins, J.E. Jr., Kingsley, T.C., Black, F.O., and Matz, G.J. (1981). Aminoglycoside-induced cochlear pathology in man. Acta Oto-laryngol. (Stockholm) Suppl. 383 1–19.

    CAS  Google Scholar 

  • Kiang, N.Y.S., and Moxon, E.C. (1972). Physiological considerations in artificial stimulation of the inner ear. Ann. Otol. Rhinol. Laryngol. (St. Louis) 81: 714–730.

    CAS  Google Scholar 

  • Kitzes, L.M., Gibson, M.M., Rose, J.E., and Hind, J.E. (1978). Initial discharge latency and threshold considerations for some neurons in the cochlear nuclear complex of the cat. J. Neurophysiol. 41: 1165–1182.

    PubMed  CAS  Google Scholar 

  • Merzenich, M.M., and White, M.W. (1977). Cochlear implant. The interface problem. Biomedical Engineering and Instrumentation. Funct. Elect. Stim. 3: 321–340.

    Google Scholar 

  • Parkins, C.W., and Colombo, J. (1987). Auditory-nerve single-neuron thresholds to electrical stimulation from scala tympani electrodes. Hearing Res. 31: 267–286.

    Article  CAS  Google Scholar 

  • Pfingst, B.E. (1984). Operating ranges and intensity psychophysics for cochlear implants. Arch. Otol. 110: 140–144.

    CAS  Google Scholar 

  • Pfingst, B.E. (1988). Comparisons of psychophysical and neurophysiological studies of cochlear implants. Hearing Res. 34: 243–252.

    Article  CAS  Google Scholar 

  • Pfingst, B.E. (1989). Changes over time in thresholds for electrical stimulation of the cochlea. Abstracts of the 12th Midwinter Research Meeting of the Association for Research in Otolaryngology, pp. 270–271.

    Google Scholar 

  • Pfingst, B.E., Burnett, P.A., and Sutton, D. (1983). Intensity discrimination with cochlear implants. J. Acoust. Soc. Am. 73: 1283–1292.

    Article  PubMed  CAS  Google Scholar 

  • Pfingst, B.E., Donaldson, J.A., Miller, J.M., and Spelman, F.A. (1979). Psycho-physical evaluation of cochlear prostheses in a monkey model. Ann. Otol. Rhinol. Laryngol. (St. Louis) 88: 613–625.

    CAS  Google Scholar 

  • Pfingst B.E., Glass I., Spelman F.A., and Sutton D. (1985). Psychophysical studies of cochlear implants in monkeys: Clinical implications. In Cochlear Implants, edited by R.A. Schindler and M.M. Merzenich ( New York: Raven Press ), pp. 305–321.

    Google Scholar 

  • Pfingst, B.E., and Rush, N.L. (1987). Discrimination of simultaneous frequency and level changes in electrical stimuli. Ann. Otol. Rhinol. Laryngol. (St. Louis) Suppl. 128,96: 34–37.

    Google Scholar 

  • Pfingst, B.E., and Sutton, D. (1983). Relation of cochlear implant function to histopathology in monkeys. Ann. N.Y. Acad. Sci. 405: 224–239.

    Article  PubMed  CAS  Google Scholar 

  • Pfingst, B.E., and Sutton, D. (1984). Relation of psychophysical thresholds for electrical stimuli to auditory nerve survival: Summary of results for 18 scala tympani implants. Abstracts of the 7th Midwinter Research Meeting of the Association for Research in Otolaryngology, p. 10.

    Google Scholar 

  • Pfingst, B.E., Sutton, D., Miller, J.M., and Bohne, B.A. (1981). Relation of psychophysical data to histopathology in monkeys with cochlear implants. Acta Otolaryngol. (Stockholm) 92: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Rose, J.E., Hind, J.E., Anderson, D.J., and Brugge, J.F. (1971). Some effects of stimulus intensity on response of auditory nerve fibers in the squirrel monkey. J. Neurophysiol. 34: 685–699.

    PubMed  CAS  Google Scholar 

  • Rubinstein, J.T., and Spelman, F.A. (1988). Analytical theory for extracellular electrical stimulation of nerve with focal electrodes. I. Passive unmyelinated axon. Biophys. J. 54: 975–981.

    Article  PubMed  CAS  Google Scholar 

  • Shannon, R.V. (1983). Multichannel electrical stimulation of the auditory nerve in man. I. Basic psychophysics. Hearing Res. 11: 157–189.

    Article  CAS  Google Scholar 

  • Shannon, R.V. (1985). Threshold and loudness functions for pulsatile stimulation of cochlear implants. Hearing Res. 11: 157–189.

    Article  Google Scholar 

  • Shannon, R.V. (1986). Temporal processing in cochlear implants. In Sensorineural Hearing Loss. Mechanisms, Diagnosis, Treatment, edited by M.J. Collins,T.J. Glattke, and L.A. Harker ( Iowa City: University of Iowa ), pp. 349–367.

    Google Scholar 

  • Spelman, F.A., Clopton, B.M. and Pfingst, B.E. (1982). Tissue impedance and current flow in the implanted ear: Implications for the cochlear prosthesis. Ann. Othol. Rhinol. Laryngol. (St. Louis) Suppl. 98,91: 3–8.

    Google Scholar 

  • Spelman, F.A., Pfingst, B.E., and Miller, J.M. (1978). A constant-current stimulator for use with chronic cochlear implants. Proc. San Diego Biomed. Symp. 17: 1–3.

    Google Scholar 

  • Spelman, F.A., Soma, M., and Rubinstein, J.T. (1984). Electric field models of implanted ear. Abstracts of the 7th Midwinter Research Meeting of the Association for Research in Otolaryngology, p. 81.

    Google Scholar 

  • van den Honert, C., and Stypulkowski, P.H. (1984). Physiological properties of electrically stimulated auditory nerve. II. Single fiber recordings. Hearing Res. 14: 225–243.

    Article  Google Scholar 

  • van den Honert, C., and Stypulkowski, P.H. (1987). Single fiber mapping of spatial excitiation patterns in the electrically stimulated auditory nerve. Hearing Res. 29: 195–206.

    Article  Google Scholar 

  • Voigt, H.F., and Young, E.D. (1988). Neural correlations in the dorsal cochlear nucleus: Pairs of units with similar response properties. J. Neurophysiol. 59: 1014–1032.

    PubMed  CAS  Google Scholar 

  • Wilson, B.S., and Finley, C.C. (1986). Latency fields in electrically evoked hearing. Abstracts of the 9th Midwinter Research Meeting of the Association for Research in Otolaryngology, pp. 170–171.

    Google Scholar 

  • Xue, X., and Pfingst, B.E. (1989). Inner ear implants for experimental electrical stimulation of auditory nerve arrays. J. Neurosci. Meth., 28: 189–196.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Pfingst, B.E. (1990). Psychophysical Constraints on Biophysical/Neural Models of Threshold. In: Miller, J.M., Spelman, F.A. (eds) Cochlear Implants. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3256-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3256-8_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7936-5

  • Online ISBN: 978-1-4612-3256-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics