Skip to main content

Cellular Interactions in the Suppression of Hematopoiesis

  • Chapter
  • 147 Accesses

Abstract

It is well established that the complex series of events leading to the production of adequate numbers of mature blood cells is regulated by humoral and cell-mediated events that normally function to maintain blood cell numbers within very narrow limits.1–6 Significant changes in the rate of production of blood cells can occur when the rate of synthesis of the regulatory humoral factor(s) is altered. This is clearly demonstrated by the increased circulating red cell mass in individuals producing elevated levels of erythropoietin (Ep) when subjected to hypoxia,7 and by the anemia present in renoprival patients with decreased Ep production.8 A direct association between altered cell-mediated events and hematopoiesis in vivo has not been clearly established.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gordon S. Erythropoietin. Vitam Horm 1973; 31:105–174.

    Article  CAS  Google Scholar 

  2. Zanjani ED, Ascensao JL. Erythropoietin. Transfusion 1989, 29:46–57.

    Article  PubMed  CAS  Google Scholar 

  3. Trentin JJ. Influence of hematopoietic organ stroma (hematopoietic inductive microenvironment) on stem cell differentiation. In: Gordon AS, ed. Regulation of Hematopoiesis. New York, Appleton-Century-Croft, 1980: pp. 159–184.

    Google Scholar 

  4. Nathan DG, Chess L, Hellman DG, Human erythroid burst forming unit: T cell requirement for proliferation in vitro. J Exp Med. 1978; 147:324.

    Article  PubMed  CAS  Google Scholar 

  5. Ascensao JL, Vercellotti GM, Jacobs HS, Zanjani ED. Role of endothelial cells in human hematopoiesis: Modulation of mixed colony growth in vitro. Blood 1984; 63:553–558.

    PubMed  CAS  Google Scholar 

  6. Torok-Storb B. Cellular interactions. Blood 1988; 72:373–385.

    CAS  Google Scholar 

  7. Erslev AJ. Blood and mountains. In: Wintrobe MM, ed. Blood, Pure and Eloquent. New York, McGraw-Hill, 1980: pp. 257–280.

    Google Scholar 

  8. Eschbach JW, Egrie JC, Downing MR, et al. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. N Engl J Med 1987; 316:73–78.

    Article  PubMed  CAS  Google Scholar 

  9. Nomdedeu B, Gormus BJ, Banisadre M, et al. Human peripheral blood erythroid burst forming unit (BFU-E): Evidence against T lymphocyte requirement for proliferation in vitro. Exp Hematol 1980; 8:845–852.

    PubMed  CAS  Google Scholar 

  10. Zuckerman KS. Human erythroid burst forming unit: Growth in vitro is dependent on monocytes but not T cells. J Clin Invest 1981; 67:702–710.

    Article  PubMed  CAS  Google Scholar 

  11. Hoffman R, Zanjani ED, Lutton JD, et al. Suppression of erythroid colony formation by lymphocytes from patients with aplastic anemia. N Engl J Med 1977; 296:10–13.

    Article  PubMed  CAS  Google Scholar 

  12. Wisniewski D, Strife A, Wachter M, Clarkson B. Regulation of human peripheral blood erythroid burst-forming unit growth by T lymphocytes and T lymphocyte subpopulations defined by OKT4 and OKT8 monoclonal antibodies. Blood 1985; 65:456–463.

    PubMed  CAS  Google Scholar 

  13. Harada M, Odaka K, Kondo K, et al. Effect of activated lymphocytes on the regulation of hematopoiesis: Suppression of in vitro granulopoiesis and eryth-ropoiesis by OKT8+la - T cells induced by concanavalin-A stimulation. Exp Hematol 1985; 13:963–967.

    PubMed  CAS  Google Scholar 

  14. Harada M, Nakao S, Kondo K, et al. Effect of activated lymphocytes on the regulation of hematopoiesis: Enhancement and suppression of in vitro BFU-E growth by T cells stimulated by autologous non-T cells. Blood 1986; 67:1143–1147.

    PubMed  CAS  Google Scholar 

  15. Burdach SEG, Levitt LJ. Receptor-specific inhibition of bone marrow erythro-poiesis by recombinant DNA-derived interleukin-2. Blood 1987; 69:1368–1375.

    PubMed  CAS  Google Scholar 

  16. Roodman GD, Kaplan JM, Kaplan ME, Zanjani ED. Effect of shortened erythropoietin exposure on sheep marrow cultures. Br J Haematol 1981; 47:195–201.

    Article  PubMed  CAS  Google Scholar 

  17. Sherwood JB. The chemistry and physiology of erythropoietin. Vitam Horm 1984; 41:161–211.

    Article  PubMed  CAS  Google Scholar 

  18. Ascensao JL, Zanjani ED. Cellular interactions in the regulation of human hemopoiesis in vitro. In: Tavassoli M, ed. Hematopoietic Microenvironment. New York, Humana Press, 1989 (in press).

    Google Scholar 

  19. Banisadre M, Ash RC, Ascensao JL, et al. Suppression of erythropoiesis by mitogen activated T lymphocytes in vitro. In: Baum SJ, Ledney GD, Khan A, eds. Experimental Hematology Today. New York, S. Karger, 1981: pp. 151–159.

    Google Scholar 

  20. Aye MT. Erythroid colony formation in cultures of human marrow: Effect of leucocyte conditioned medium. J Cell Physiol 1977; 91:69–77.

    Article  PubMed  CAS  Google Scholar 

  21. Sieff CA, Emerson SG, Mufson A, et al. Dependence of highly enriched human marrow progenitors on hemopoietic growth factors and their response to re-combinant erythropoietin. J Clin Invest 1987; 77:74–81.

    Article  Google Scholar 

  22. Clark SC, Kamen R. The human hematopoietic colony-stimulating factors. Science 1987; 236:1229–1237.

    Article  PubMed  CAS  Google Scholar 

  23. Metealf D. The granulocyte-macrophage colony stimulating factors. Science 1985; 229:16–22.

    Google Scholar 

  24. Souza LM, Boone TC, Gabriloue J, et al. Recombinant human granulocyte colony-stimulating factor: Effects on normal and leukemic myeloid cells. Science 1986; 232:61–65.

    Article  PubMed  CAS  Google Scholar 

  25. Groopman JE, Mitsuyasu RT, DeLeo MG, et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor on myelopoiesis in the acquired immunodeficiency syndrome. N Engl J Med 1987; 317:593–598.

    Article  PubMed  CAS  Google Scholar 

  26. Brandt SJ, Peters WP, Atwater SK, et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor of hematopoietic reconstitution after high-dose chemotherapy and autologous bone marrow transplantation. N Engl J Med 1988; 318:869–876.

    Article  PubMed  CAS  Google Scholar 

  27. Iscove NN, Gilbert JJ. Erythropoietin-independence of early erythropoiesis and a two regulator model of a proliferative control in the hematopoietic system. In: Murphy MJ, ed. In Vitro Aspects of Erythropoiesis. New York, Springer-Verlag, 1978: pp. 3–8.

    Google Scholar 

  28. Rambaldi A, Young DC, Griffin JD. Expression of the M-CSF (CSF-1) gene by human monocytes. Blood 1987; 69:1409–1413.

    PubMed  CAS  Google Scholar 

  29. Horiguchi J, Warren MK, Kufe D. Expression of the macrophage specific colony stimulating factor in human monocytes treated with granulocyte-macrophage colony stimulating factor. Blood 1987; 69:1259–1261.

    PubMed  CAS  Google Scholar 

  30. Seelentaag WK, Mermod JJ, Motesano R, Vassalli P. Additive effects of interleukin-1 and tumor necrosis-a factor on the accumulation of the three granulocyte-macrophage colony stimulating factors MRNAs in human endothelial cells. Emb J 1987; 6:2261–2265.

    Google Scholar 

  31. Sieff CA, Tsai S, Faller DV. Interleukin-1 induces altered human endothelial cell production of granulocyte-macrophage colony stimulating factor. J Clin Invest 1987; 79:48–51.

    Article  PubMed  CAS  Google Scholar 

  32. Broudy VC, Kaushansky K, Segal GM, et al. Tumor necrosis factor type alpha stimulates human endothelial cells to produce granulocyte/macrophage colony stimulating factor. Proc Natl Acad Sei USA 1986; 83:7467–7471.

    Article  CAS  Google Scholar 

  33. Rosenstreich DL, Farr JJ, Daugherty SS. Absolute macrophage dependence of T lymphocyte activation by mitogens. J Immunol 1976; 116:131–139.

    PubMed  CAS  Google Scholar 

  34. Stobo JD. Immunosuppression in man: Suppression by macrophages can be mediated by interactions with regulatory T cells. J Immunol 1977; 119:918–924.

    PubMed  CAS  Google Scholar 

  35. Bagby GC, Rigas VD, Bennett RM, et al. Interaction of lactoferrin, monocytes and T lymphocyte subsets in the regulation of steady-state granulopoiesis in vitro. J Clin Invest 1981; 68:56–63.

    Article  PubMed  CAS  Google Scholar 

  36. Broudy VC, Zuckerman KS, Jetmaluni S, et al. Monocytes stimulate fibro-blastoid bone marrow stromal cells to produce multilineage hematopoietic growth factors. Blood 1986; 68:530–534.

    PubMed  CAS  Google Scholar 

  37. Verma DS, Spitzer G, Zander AR, et al. T lymphocyte and monocyte-macrophage interaction in colony-stimulating activity elaboration in man. Blood 1979; 54:1376–1383.

    PubMed  CAS  Google Scholar 

  38. Reid CDL, Bapista LC, Chanarin I. Erythroid colony growth in vitro from human peripheral blood null cells: Evidence for regulation by T lymphocytes and monocytes. Br J Haematol 1981; 48:155–164.

    Article  PubMed  CAS  Google Scholar 

  39. Bagby GC Jr, McCall E, Bergstrom KA, Burger D. A monokine regulates colony-stimulating activity production by vascular endothelial cells. Blood 1983; 62:663–668.

    PubMed  CAS  Google Scholar 

  40. Bagby GC. Production of multilineage growth factors by hematopoietic stromal cells: An intercellular regulatory network involving mononuclear phagocytes and interleukin-1. Blood Cells 1987; 13:147–159.

    PubMed  CAS  Google Scholar 

  41. Dinarello CA. Interleukin-1 and the pathogenesis of the acute-phase response. N Engl J Med 1984; 311:1413–1418.

    Article  PubMed  CAS  Google Scholar 

  42. Munker R, Gasson J, Ogawa M, Koeffler HP. Recombinant human TNF induces production of granulocyte-monocyte colony stimulating factor. Nature (London) 1986; 323:79–82.

    Article  CAS  Google Scholar 

  43. Hoffman R, Kopel S, Hsu SD, et al. T-cell chronic lymphocytic leukemia: Presence in bone marrow and peripheral blood of cells that suppress erythropoiesis in vitro. Blood 1978; 52:255–260.

    PubMed  CAS  Google Scholar 

  44. Lifton JM, Nadler LM, Canellos GP, et al. Evidence for genetic restriction in the suppression of erythropoiesis by a unique subset of T lymphocyte in man. J Clin Invest 1983; 72:694–706.

    Article  Google Scholar 

  45. Bagby GC, Lawrence HJ, Neerhout RC. T lymphocyte-mediated granulopoietic failure: In vitro identification of prednisone responsive patients. N Engl J Med 1983; 309:1073–1078.

    Article  PubMed  Google Scholar 

  46. Ascensao JL, Pahwa R, Kagan W, et al. Aplastic anemia: Evidence for an immunologic mechanism. Lancet 1976; 1:669–671.

    Article  PubMed  CAS  Google Scholar 

  47. Singer JW, Doney KL, Thomas ED. Coculture studies of 16 untransfused patients with aplastic anemia. Blood 1979; 54:180–185.

    PubMed  CAS  Google Scholar 

  48. Torok-Storb BJ, Sieff CA, Storb R, et al. In vitro tests for distinguishing possible immune mediated aplastic anemia from transfusion induced sensitization. Blood 1980; 55:211–215.

    PubMed  CAS  Google Scholar 

  49. Krantz SB, Koo V. Studies in pure red cell aplasia demonstration of a plasma inhibitor to hemsynthesis and an antibody to erythroblast nuclei. Proc Natl Acad Sei USA 1967; 58:493–500.

    Article  CAS  Google Scholar 

  50. Clark DA, Dessypris EN, Krantz SB. Blood studies in pure red cell aplasia XI. Results of immunosuppressive treatments of 37 patients. Blood 1984; 63:277–286.

    PubMed  CAS  Google Scholar 

  51. Litwin SD, Zanjani ED. Lymphocytes suppressing both immuno-globulin production and erythroid differentiation in hypogammaglobulinemia. Nature (London) 1977; 266:57–58.

    Article  CAS  Google Scholar 

  52. Champhin R, Winston H, Gale R. Anti-T lymphocyte globulin treatment in patients with aplastic anemia. N Engl J Med 1983; 308:113–118.

    Article  Google Scholar 

  53. Mamus SW, Oken MM, Zanjani ED. Ibuprofen associated pure white cell aplasia. New Engl J Med 1986; 314:624–625.

    Article  PubMed  CAS  Google Scholar 

  54. Alter B, Potter NU, Li F. Classification and etiology of the aplastic anemias. Clinics Hematol 1978; 7:431–465.

    CAS  Google Scholar 

  55. Yunis AA. Mechanisms underlying marrow toxicity from chloramphenicol and thiamphenicol. In: Silber R, LoBue J, Gorbon AS, eds. The Year in Hematology: 1978. New York and London, PMB Company, 1978: pp. 143–170.

    Google Scholar 

  56. Laver J, Kernan ND, Levick J, et al. In vitro gamma interferon mediated hemopoietic suppressors in severe aplastic anemic patients: Pre and post-ATG studies. Exp Hematol 1985; 13:433.

    Google Scholar 

  57. Mamus SW, Zanjani ED. Interferons and erythropoiesis. In: Zanjani ED, Tavassoli M, Ascensao JL, eds. Regulation of Erythropoiesis. New York, PMA Publishing Inc., 1988; 289–297.

    Google Scholar 

  58. Gascon P, Zoumbos N, Scala G, et al. Lymphokine abnormalities in aplastic anemia: Implications for the mechanism of action of ATG. Blood 1985; 65:407–413.

    PubMed  CAS  Google Scholar 

  59. Zoumbos N, Gascon P, Djeu J, Young N. Interferon is the mediator of hematopoietic suppression in aplastic anemia in vitro and possibly in vivo. Proc Natl Acad Sei USA 1985; 82:188–192.

    Article  CAS  Google Scholar 

  60. Broxmeyer HE, Lu L, Platzer E, Feit C, et al. Comparative analysis of the influences of human gamma, alpha and beta interferons on human multipotential (CFU-GEMM), erythroid (BFU-E) and granulocyte-macrophage (CFU-GM) progenitor cells. J Immunol 1983; 131:1300–1305.

    PubMed  CAS  Google Scholar 

  61. Mamus SW, Oken MM, Zanjani ED. Suppression of normal erythropoisis by human recombinant DNA-produced alpha-2-interferon in vitro. Exp Hematol 1986; 14:1015–1022.

    PubMed  CAS  Google Scholar 

  62. Torok-Storb B, Johnson GG, Bowden R, Storb R. Gamma interferon in aplastic anemia: Failure to detect significant levels in sera or demonstrate hematopoietic suppressing activity. Blood 1987; 69:629–633.

    PubMed  CAS  Google Scholar 

  63. Raefsky FL, Platanias LC, Zoumbos NC, Young NS. Studies of interferon as a regulator of hematopoietic cell proliferation. J Immunol 1985; 135: 2507–2512.

    PubMed  CAS  Google Scholar 

  64. Hinterberger W, Adolf G, Aichinger G, et al. Further evidence for lymphokine overproduction in severe aplastic anemia. Blood 1988; 72:266–272.

    PubMed  CAS  Google Scholar 

  65. Fauser AA, Messner HA. Identification of megakaryocytes, macrophages, and eosinophils in colonies of human bone marrow containing neutrophilic granulocytes and erythroblasts. Blood 1979; 53:1023–1027.

    PubMed  CAS  Google Scholar 

  66. Lloyd RE, Blalock JE, Stanton CJ. Cell to cell transfer of interferon-induced antiproliferative activity. Science 1980; 211:953–955.

    Google Scholar 

  67. Zanjani ED, McGlave PB, Davies SF, et al. In vitro suppression of erythropoie-sis by bone marrow adherent cells from some patients with fungal infection. Br J Haematol 1982; 50:479–490.

    Article  PubMed  CAS  Google Scholar 

  68. Mamus SW, Oken MM, Zanjani ED. Suppression of normal human erythropoisis by human recombinant DNA-produced alpha-2 interferon in vitro. Exp Hematol 1986; 14:1015–1022.

    PubMed  CAS  Google Scholar 

  69. Vercellotti GM, Van Asbeck S, Rutherford L, et al. Lysosome-free neutroplasts potently damage tissue via toxic 02 radicals: Amplification by miniscule amounts of plasma membrane lactoferrin. Clin Res 1984; 32:500A.

    Google Scholar 

  70. Tavassoli M, Yoffey JM (eds). Bone Marrow: Structure and Function. New York, Liss, 1983:pp. 1–300.

    Google Scholar 

  71. Jacob HS. Inflammatory cell mediated endothelial damage: Role in marrow dysfunction. In: Zanjani ED, Ascensao JL, eds. Regulation of Erythropoiesis. New York, PMA Publishing, 1988: pp. 193–198.

    Google Scholar 

  72. Vercellotti GM, Van Asbeck SB, Jacob HS. Oxygen radical induced erythrocyte hemolysis by neutrophils: Critical role of iron on lactoferrin. J Clin Invest 1985; 76:956–962.

    Article  PubMed  CAS  Google Scholar 

  73. Broxmeyer HE, Smithyman T, Eger RR, et al. Identification of lactoferrin as the granulocyte derived inhibition of colony stimulating activity production. J Exp Med 1978; 148:1052.

    Article  PubMed  CAS  Google Scholar 

  74. Sacks T, Moldow CF, Carddock PR, et al. Oxygen radicals mediate endothelial cell damage by complement stimulated granulocytes: An in vitro model of immune vascular damage. J Clin Invest 1978; 61:1161–1167.

    Article  PubMed  CAS  Google Scholar 

  75. Nathan C, Horowitz C, de la Harpe J, et al. Administration of recombinant interferon gamma enhances the ability of cancer patients monocytes to secrete H202. Clin Res 1986; 33:559A.

    Google Scholar 

  76. Young N, Zoumbos N, Gascon P, et al. The immunologic pathophysiology of aplastic anemia: Implications for a viral etiology. In: Zanjani ED, Tavassoli M, Ascensao JL, eds. Regulation of Erythropoiesis. New York, PMA Publishing, 1988: pp. 279–288.

    Google Scholar 

  77. Young N, Mortimer P. Viruses and bone marrow failure. Blood 1984; 63:729–737.

    PubMed  CAS  Google Scholar 

  78. Anderson M, Pattison J, Young N. Pathogenesis of parvovirus induced disease in man. In: Notkins AL, Oldstone MBS, eds. Concepts in Viral Pathogenesis (Vol 2). New York, Springer-Verlag, 1986.

    Google Scholar 

  79. Mortimer P, Humphries R, Moore J, et al. A human parvovirus-like inhibits hematopoietic colony formation in vitro. Nature (London) 1983; 302:426–427.

    Article  CAS  Google Scholar 

  80. Young N, Harrison M, Moore J, et al. Direct demonstration of human parvovirus in erythroid progenitor cells infected in vitro. J Clin Invest 1984; 74:2024–2032.

    Article  PubMed  CAS  Google Scholar 

  81. Young N, Mortimer P, Moore J, Humphries R. Characterization of a virus that causes transient aplastic crisis. J Clin Invest 1984; 73:224–230.

    Article  PubMed  CAS  Google Scholar 

  82. Namiki TS, Boone DC, Meyer PR. A comparison of bone marrow findings in patients with acquired immunodeficiency syndromes (AIDS) and AIDS related conditions. Hematol Oncol 1987; 5:99–106.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Inc.

About this chapter

Cite this chapter

Roy MacKintosh, F., Schulman, J.C., Zanjani, E.D. (1990). Cellular Interactions in the Suppression of Hematopoiesis. In: Shahidi, N.T. (eds) Aplastic Anemia and Other Bone Marrow Failure Syndromes. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3254-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3254-4_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7935-8

  • Online ISBN: 978-1-4612-3254-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics