Skip to main content

Cerebral Phosphorus Magnetic Resonance Spectroscopy in Perinatal Distress

  • Chapter
  • 64 Accesses

Abstract

Perinatal asphyxia occurs in 1% to 5% of all births and frequently results in a permanent neurological handicap.1 The extent of brain damage is probably related to the duration and degree of fetal hypoxia and ischemia and to resultant changes in cerebral metabolism. Following hypoxic-ischemic insults, cortical metabolism changes from aerobic to anaerobic glycolysis and has secondary changes in phosphorus-containing metabolites, lactate accumulation, and acidosis.2 These changes may represent the final common pathway of hypoxic cerebral damage that occurs after hypoxia or ischemia.3

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nelson KB, Ellenberg JH: Neonatal signs as predictors of cerebral palsy. Pediatrics 64:225–232, 1979.

    PubMed  CAS  Google Scholar 

  2. Holowach-Thurston J, Hauhart RE, Jones EM, et al: Decrease in brain glucose in anoxia in spite of elevated plasma glucose levels. Pediatr Res 7:691–695, 1973.

    Article  PubMed  CAS  Google Scholar 

  3. Thulborn KR, Du Boulay GH, Duchen LW, Radda G: A 31P nuclear magnetic resonance in vivo study of cerebral ischemia in the gerbil. J Cereb Blood Flow Metab 2:299–306, 1982.

    Article  PubMed  CAS  Google Scholar 

  4. Michaelis L, Menten M: Die Kinetic der Intervertasewirkung. Biochem Z 49:333, 1913.

    CAS  Google Scholar 

  5. Chance B, Leigh JS Jr, Nioka S: P MRS as a sensor of oxygen in the heart of brain tissue. Society for Magnetic Research in Medicine, Fifth Annual Meeting 1986, Vol 4, p 1368.

    Google Scholar 

  6. Younkin DP, Delivoria-Papadopoulos M, Maris J, Donlon E, Clancy R, Chance B: Cerebral metabolic effects of neonatal seizures measured with in-vivo31P NMR spectroscopy. Ann Neurol 20:513, 1986.

    Article  PubMed  CAS  Google Scholar 

  7. Lentz TL: Cell Fine Structure: An Atlas of Drawings of Whole Cell Structure. Philadelphia: W.B. Saunders, 1971, p 357.

    Google Scholar 

  8. Rothman S: Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal depth. J Neurosci 4:1884, 1984.

    PubMed  CAS  Google Scholar 

  9. Chance B, Leigh JS Jr, Clark BJ, et al: Control of oxidative metabolism and oxygen delivery in human skeletal muscle: A steady-state analysis of the work/energy cost transfer function. Proc Natl Acad Sci USA 82:8384, 1985.

    Article  PubMed  CAS  Google Scholar 

  10. Chance B, Leigh JS, Kent K, et al: Multiple controls of oxidative metabolism of living tissues as studied by 31P MRS. Proc Natl Acad Sci USA 83:9458–9462, 1987.

    Article  Google Scholar 

  11. Maris J, Argov Z, DaMico L, Leigh JS Jr, Chance B: 31P NMR in hamster dystrophy: Skeletal muscle bioenergetics in an animal model of inherited myopathy. Society for Magnetic Research in Medicine, Fifth Annual Meeting 1986, Vol 2, p 442.

    Google Scholar 

  12. Chance B, Eleff S, Leigh JS Jr: Noninvasive, nondestructive approaches to cell bioenergetics. Proc Natl Acad Sci USA, 77:7430, 1980.

    Article  PubMed  CAS  Google Scholar 

  13. Lawson B, Guillet R, Sinnwell T, Gradwell L, Chance B, Delivoria-Papadopoulos M: Nuclear magnetic resonance (NMR) spectroscopy as a predictor of survival in the severely ill neonate. Pediatr Res 20:352, 1986.

    Google Scholar 

  14. Chance B, Clark BJ, Nioka S, Harihara Subramanian V, Maris JM, Bode H: Phosphorus NMR spectroscopy in-vivo. Circulation 72(Suppl IV): 103, 1985.

    Google Scholar 

  15. Bottomley PA, Smith LS, Brazzamano S, Hedlund L, Redington RW, Herfkens RJ: The fate of Pi and pH in regional myocardial infarction: A noninvasive 31P NMR study. Society for Magnetic Research in Medicine, Fifth Annual Meeting 1986, Vol 3, p 608.

    Google Scholar 

  16. Maris JM, Evans AE, McLaughlin AC, et al: 31P Nuclear magnetic resonance spectroscopic investigation of human neuroblastoma in situ. N Engl J Med 312:1500, 1985.

    Article  PubMed  CAS  Google Scholar 

  17. Chance B, Eleff S, Leigh JS Jr, Sokolow D, Sapega A: Mitochondrial regulation of phosphocreatine/inorganic phosphate ratios in exercising human muscle: A gated 31P NMR study. Proc Natl Acad Sci USA 78:6714, 1981.

    Article  PubMed  CAS  Google Scholar 

  18. Arnold DL, Matthews PM, Radda GK: Metabolic recovery after exercise and the assessment of mitochondrial function in-vivo in human skeletal muscle by means of 31P NMR. Mag Res Med 1:307, 1984.

    Article  CAS  Google Scholar 

  19. Whitman GJ, Chance B, Bode H, et al: Diagnosis and therapeutic evaluation of a pediatric cardiomyopathy using 31P NMR. J Am Coll Cardiol 5:745, 1985.

    Article  PubMed  CAS  Google Scholar 

  20. Gyulai L, Bolinger L, Leigh JS Jr, Barlow C, Chance B: Phosphorylethanolamine— the major constituent of the phosphomonoester peak observed by 31P NMR on developing dog brain. FEBS Lett 178:137, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Nioka S, Mayevsky A, Chance B, et al: Age dependent metabolic control parameters in the neonate puppy brain from birth to 21 days age. Society for Magnetic Research in Medicine, Fifth Annual Meeting, 1986, Vol 3, p 674.

    Google Scholar 

  22. Chance B, Nioka S, Smith D, Leigh JS Jr: Biochemical heterogeneity in brain ischemia. Society for Magnetic Research in Medicine, Fifth Annual Meeting 1986, Vol 4, p 1372.

    Google Scholar 

  23. Lien RI, Sinnwell T, Chance B, Delivoria-Papadopoulos M: Analysis of cerebral metabolism in a neonatal population. Society for Magnetic Research in Medicine, Fifth Annual Meeting, 1986, Vol 2, p 293.

    Google Scholar 

  24. Hope PL, Cady EB, Tofts PS, et al: Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants. Lancet 2:366, 1984.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Delivoria-Papadopoulos, M. (1990). Cerebral Phosphorus Magnetic Resonance Spectroscopy in Perinatal Distress. In: Pomerance, H.H., Bercu, B.B. (eds) Topics in Pediatrics. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3230-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3230-8_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7925-9

  • Online ISBN: 978-1-4612-3230-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics