Topological Properties of Observer’s Inputs

  • H. Hammouri
  • J. de Leon Morales
Part of the Progress in Systems and Control Theory book series (PSCT, volume 8)

Abstract

This paper deals with the problem of synthesis of observers for nonlinear systems. In the first part we construct an observer for state-affine systems and we show that it depends on the inputs of the systems. The second part consists in classifying the inputs for which the observer converges and gives some topological properties.

Keywords

Manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Bornard, N. Couenne, F. Celle. “Regularly persistent observers for bilinear systems. ”Proceedings of the 29 Internat. Conf. on Nonlinear Systems “New Trends in Nonlinear System theory”. 122, (1988) Springer Verlag.Google Scholar
  2. [2]
    F. Celle, J. P. Gauthier, D. Kasakos, G. Sallet. “Synthesis of nonlinear observers: A Harmonic-analysis approach” Math. Systems Theory 22, (1989) 291–322CrossRefGoogle Scholar
  3. [3]
    Y. Funahashi “Stable state estimator for bilinear systems” Internat. J. Control: (1979), 29, pp. 181–188.CrossRefGoogle Scholar
  4. [4]
    S. Hara & K. Furuta. “Minimal order state observers for bilinear systems” Internat. J. Control; 24, (1976), 705–718CrossRefGoogle Scholar
  5. [5]
    L. Hormander “On the division of distribution by polynomials”. Arkiv. fur math. 3,1958.Google Scholar
  6. [6]
    H.J. Sussmann “Single input observability of continuous time systems” Math. Systems Theory 12, (1979), 371–393.CrossRefGoogle Scholar
  7. [7]
    D. Williamson “Observability of bilinear systems, with applications to biological control” Automatica 13. (1977), pp. 243–254d.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Boston 1991

Authors and Affiliations

  • H. Hammouri
    • 1
  • J. de Leon Morales
    • 1
  1. 1.Laboratoire d’Automatique et de Genie des ProcédésURA D1328 CNRS.Université Claude Bernard Lyon IVilleurbanneFrance

Personalised recommendations