Interleukin-3

  • J. N. Ihle
Part of the Springer Study Edition book series (SSE)

Abstract

Interleukin-3 (IL-3) is one of a large and growing group of growth factors which support the proliferation and differentiation of hematopoietic progenitors as well as cells committed to various myeloid lineages. The term IL-3 was initially introduced to identify a T-cell-derived lymphokine which was capable of inducing the expression of the enzyme 20α-hydroxysteroid dehydrogenase (20αSDH) in cultures of nude mouse splenic lymphocytes (IHLE et al. 1981, 1982a). This assay was developed to identify T-cell factors which might support the proliferation and differentiation of early hematopoietic progenitors capable of committing to T-lineage differentiation (Ihle and Weinstein 1986). With the purification of IL-3 to homogeneity it became evident this lymphokine had a broad spectrum of activities on hematopoietic cells and was equivalent to other biological activities which had been characterized including mast cell growth factor activity, P-cell stimulating factor activity, burst promoting activity, multi-colony stimulating factor, thy-1 inducing factor, and WEHI-3 growth factor as well as a number of other activities for which the factors had been less characterized (Ihle et al. 1983; Ihle and Weinstein 1986; Ihle 1986).

Keywords

Tyrosine Leukemia Glucocorticoid Hydroperoxide Nash 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alt FW, Blackwell TK, DePinho RA, Reth MG, Yancopoulos GD (1986) Regulation of genome rearrangement events during lymphocyte differentiation. Immunol Rev 89:5–30.PubMedCrossRefGoogle Scholar
  2. Azoulay M, Webb CG, Sachs L (1987) Control of hematopoietic cell growth regulators during mouse fetal development. Mol Cell Biol 7:3361–3364.PubMedGoogle Scholar
  3. Bagby GC (1987) Production of multilineage growth factors by hematopoietic stromal cells: an intercellular regulatory network involving mononuclear phagocytes and interleukin-1. Blood Cells 13:147–159.PubMedGoogle Scholar
  4. Barlow DP, Biican M, Lehrach H, Hogan BL, Gough NM (1987) Close genetic and physical linkage between the murine haemopoietic growth factor genes GM-CSF and Multi-CSF (IL3). EMBO J 6:617–623.PubMedGoogle Scholar
  5. Barton BE, Wolde Mussie E, Wheller L (1988) The role of arachidonic acid metabolism in IL-3-induced proliferation. Immunopharmacol Immunotoxicol 10:35–52.PubMedCrossRefGoogle Scholar
  6. Birchenall-Sparks MC, Farrar WL, Rennick D, Kilian PL, Ruscetti FW (1986) Regulation of expression of the interleukin-2 receptor on hematopoietic cells by interleukin-3. Science 233:455–58.PubMedCrossRefGoogle Scholar
  7. Bishop JM (1983) Cellular oncogenes and retroviruses. Annu Rev Biochem 52:301–354.PubMedCrossRefGoogle Scholar
  8. Bordereaux D, Fichelson S, Sola B, Tambourin PE, Gisselbrecht S (1987) Frequent involvement of the fim-3 region in Friend murine leukemia virus-induced mouse myeloblasts leukemias. J Virol 61:4043–4045.PubMedGoogle Scholar
  9. Bowlin TL, McKown BJ, Sunkara PS (1986) Ornithine decarboxylase induction and poly amine biosynthesis are required for the growth of interleukin-2- and interleukin-3-dependent cell lines. Cell Immunol 98:341–350.PubMedCrossRefGoogle Scholar
  10. Branch DR, Turc JM, Guilbert LJ (1987) Identification of an erythropoietin-sensitive cell line. Blood 69:1782–1785.PubMedGoogle Scholar
  11. Broudy VC, Kaushansky K, Segal GM, Harlan JM, Adamson JW (1986) Tumor necrosis factor type a stimulates human endothelial cells to produce granulocyte/macrophage colony-stimulating factor. Proc Natl Acad Sci USA 83:7467–7471.PubMedCrossRefGoogle Scholar
  12. Bryant RW, She HS, Ng KJ, Siegel MI (1986) Modulation of the 5-lipoxygenase ac-tivity of MC-9 mast cells: activation by hydroperoxides. Prostaglandins 32:615–627.PubMedCrossRefGoogle Scholar
  13. Buchberg AM, Begigian HG, Taylor BA, Brownell E, Ihle JN, Nagata S, Jenkins NA, Copeland NG (1988) Localization of Evi-2 to chromosome 11: linkage to other protooncogene and growth factor loci using interspecific backcross mice. Oncogene Res 2:149–165.PubMedGoogle Scholar
  14. Burstein SA (1986) Interleukin 3 promotes maturation of murine megakaryocytes in vitro. Blood Cells 11:469–84.PubMedGoogle Scholar
  15. Campbell HD, Ymer S, Fung MC, Young IG (1985) Cloning and nucleotide sequence of the murine interleukin-3 gene. Eur J Biochem 150:297–304.PubMedCrossRefGoogle Scholar
  16. Cannistra SA, Vellenga E, Groshek P, Rambaldi A, Griffin JD (1988) Human granulocyte-monocyte colony-stimulating factor and interleukin 3 stimulate monocyte cytotoxicity through a tumor necrosis factor-dependent mechanism. Blood 71:672–676.PubMedGoogle Scholar
  17. Chavrier P, Zerial M, Lemaire P, Almendral J, Bravo R, Charnay P (1988) A gene en-coding a protein with zinc fingers is activated during G0/G1 transition in cultured cells. EMBO J 7:29–35.PubMedGoogle Scholar
  18. Chen BD-M, Clark CR (1986) Interleukin 3 (IL 3) regulates the in vitro proliferation of both blood monocytes and peritoneal exudate macrophages: synergism between a macrophage lineage-specific colony-stimulating factor (CSF-1) and IL 3. J Immunol 137:563–570.PubMedGoogle Scholar
  19. Cherwinski HM, Schumacher JH, Brown KD, Mosmann TR (1987) Two types of mouse helper T cell clone. III. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med 166:1229–1244.PubMedCrossRefGoogle Scholar
  20. Clark-Lewis I, Kent SBH, Schrader JW (1984) Purification to apparent homogeneity of a factor stimulating the growth of multiple lineages of hemopoietic cells. J Biol Chem 259:7488–7494.PubMedGoogle Scholar
  21. Clark-Lewis I, Aebersold R, Ziltener H, Schrader JW, Hood LE, Kent SB (1986) Automated chemical synthesis of a protein growth factor for hemopoietic cells, interleukin-3. Science 231:134–139.PubMedCrossRefGoogle Scholar
  22. Cohen DR, Hapel AJ, Young IG (1986) Cloning and expression of the rat interleukin-3 gene. Nucleic Acids Res 14:3641–3658.PubMedCrossRefGoogle Scholar
  23. Conscience JF, Verrier B, Martin G (1986) Interleukin-3-dependent expression of the c-myc and c-fos proto-oncogenes in hemopoietic cell lines. EMBO J 5:317–323.PubMedGoogle Scholar
  24. Cook WD, Metcalf D, Nicola NA, Burgess AW, Walker F (1985) Malignant transformation of a growth factor-dependent myeloid cell line by Abelson virus without evidence of an autocrine mechanism. Cell 41:677–683.PubMedCrossRefGoogle Scholar
  25. Cook WD, de St Groth BF, Miller JF, MacDonald HR, Gabathular R (1987) Abelson virus transformation of an interleukin 2-dependent antigen-specific T-cell line. Mol Cell Biol 7:2631–2635.PubMedGoogle Scholar
  26. Cory S (1986) Activation of cellular oncogenes in hemopoietic cells by chromosome translocation. Adv Cancer Res 47:189–234.PubMedCrossRefGoogle Scholar
  27. Cory, Bernard O, Bowtell D, Schrader S, Schrader JW (1987) Murine c-myc retroviruses alter the growth requirements of myeloid cell lines. Oncogene Res 1:61–76.PubMedGoogle Scholar
  28. Culpepper JA, Lee F (1985) Regulation of IL 3 expression by glucocorticoids in cloned murine T lymphocytes. J Immunol 135:3191–3197.PubMedGoogle Scholar
  29. Dean J, Cleveland JL, Rapp UR, Ihle JN (1987) Role of myc in the abrogation of IL3 dependence of myeloid FDP-P1 cells. Oncogene Res 1:279–296.PubMedGoogle Scholar
  30. Dexter TM, Allen TD, Lajtha LF (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91:335–344.PubMedCrossRefGoogle Scholar
  31. Dexter TM, Garland J, Scott D, Scolnick E, Metcalf D (1980) Growth of factor-dependent hemopoietic precursor cell lines. J Exp Med 152:1036–1047.PubMedCrossRefGoogle Scholar
  32. Evans RM, Hollenberg SM (1988) Zinc fingers: gilt by association. Cell 52:1–3.PubMedCrossRefGoogle Scholar
  33. Evans S, Rennick D, Farrar WL (1986) The multilineage heamopoetic growth factor IL3 and activation of protein kinase C stimulate phosphorylation of common substrates. Blood 68:906–913.PubMedGoogle Scholar
  34. Farrar WL, Thomas TP, Anderson WB (1985) Altered cytosol/membrane enzyme redistribution on interleukin-3 activation of protein kinase C. Nature 315:235–237.PubMedCrossRefGoogle Scholar
  35. Fung MC, Hapel AJ, Ymer S, Cohen DR, Johnson RM, Campbell HD, Young IG (1984) Molecular cloning of cDNA for murine interleukin-3. Nature 307:233–237.PubMedCrossRefGoogle Scholar
  36. Garland JM (1988) Rapid phosphorylation of a specific 33-kDa protein (p33) associated with growth stimulated by murine and rat IL3 in different IL3-dependent cell lines, and its constitutive expression in a malignant independent clone. Leukemia 2:94–102.PubMedGoogle Scholar
  37. Goodman JW, Hall EA, Miller KL, Shinpock SG (1985) Interleukin 3 promotes erythroid burst formation in serum-free cultures without detectable erythropoietin. Proc Natl Acad Sci USA 82:3291–3295.PubMedCrossRefGoogle Scholar
  38. Grabstein K, Eisenman J, Mochizuki D, Shanebeck K, Conlon P, Hopp T, March C, Gillis S (1986) Purification to homogeneity of B cell stimulating factor. A molecule that stimulates proliferation of multiple lymphokine-dependent cell lines. J Exp Med 163:1405–1414.Google Scholar
  39. Greenberg ME, Ziff EB (1984) Stimulation of 3T3 cells induces transcription of the cfos proto-oncogene. Nature 311:433–438.PubMedCrossRefGoogle Scholar
  40. Greenberger JS, Gans PJ, Davisson PB, Moloney WC (1979) In vitro induction of continous acute promyelocyte leukemia cell lines by Friend or Abelson murine leukemia viruses. Blood 53:987–1001.PubMedGoogle Scholar
  41. Gualtieri RJ, Liang CM, Shadduck RK, Waheed A, Banks J (1987) Identification of the hematopoietic growth factors elaborated by bone marrow stromal cells using antibody neutralization analysis. Exp Hematol 15:883–889.PubMedGoogle Scholar
  42. Hamaguchi Y, Kanakura Y, Fujita J. Takeda S, Nakano T, Tarui S, Honjo T, Kitamura Y (1987) Interleukin 4 as an essential factor for in vitro clonal growth of murine connective tissue-type mast cells. J Exp Med 165:268–273.PubMedCrossRefGoogle Scholar
  43. Hapel AJ, Fung MC, Johnson RM, Young IG, Johnson G, Metcalf D (1985) Biologic properties of molecularly cloned and expressed murine interleukin-3. Blood 65:1453–1459.PubMedGoogle Scholar
  44. Hara K, Suda T, Suda J, Eguchi M, Ihle JN, Nagata S, Miura Y, Saito M (1988) Bipotential murine hemopoietic cell line (NFS-60) that is responsive to IL-3, GMCSF, G-CSF, and erythropoietin. Exp Hemato116:256–261.Google Scholar
  45. Hapel-Bellan A, Farrar WL (1987) Modulation of proto-oncogene expression by colony stimulating factors. Biochem Biophys Res Commun 148:1001–1008.CrossRefGoogle Scholar
  46. Hasthorpe S, Carver JA, Rees D, Campbell ID (1987) Metabolic effects of interleukin 3 on 32D c123 cells analyzed by NMR. J Cell Physio1133:351–357.CrossRefGoogle Scholar
  47. Holmes KL, Palaszynski E, Fredrickson TN, Morse HC 3d, Ihle JN (1985) Correlation of cell-surface phenotype with the establishment of interleukin 3-dependent cell lines from wild-mouse murine leukemia virus-induced neoplasms. Proc Natl Acad Sci USA 82:6687–6691.PubMedCrossRefGoogle Scholar
  48. Hume CR, Nocka KH, Sorrentino V, Lee JS, Fleissner E (1988) Constitutive c-myc expression enhances the response of murine mast cells to IL-3, but does not eliminate their requirement for growth factors. Oncogene 2:223–226.PubMedGoogle Scholar
  49. Ihle JN (1986) Interleukin-3 regulation of the growth and differentiation of hematopoietic lymphoid stem cells. In: Cruse JM, Lewis RE Jr (eds) The year in immunology. Karger, Basel, pp 106–133.Google Scholar
  50. Ihle JN, Weinstein Y (1986) Immunological regulation of hematopoietic/lymphoid stem cell differentiation by interleukin 3. Adv Immunol 39:1–50.PubMedCrossRefGoogle Scholar
  51. Ihle JN, Pepersack L, Rebar L (1981) Regulation of T cell differentiation: in vitro induction of 20 α hydroxysteroid dehydrogenase in splenic lymphocytes from athymic mice by a unique lymphokine. J Immuno1126:2184–2189.Google Scholar
  52. Ihle JN, Keller J, Henderson L, Klein F, Palaszynski EW (1982 a) Procedures for the purification of interleukin-3 to homogeneity. J Immuno1129:2431–2436.Google Scholar
  53. Ihle JN, Keller J, Greenberger S, Henderson L, Yetter RA, Morse HC III (1982 b) Phenotypic characteristics of cell lines requiring interleukin-3 for growth. J Immuno1129:1377–1383.Google Scholar
  54. Ihle JN, Keller J, Oroszlan S, Henderson L, Copeland T, Fitch F, Prystowsky MB, Goldwasser E, Schrader JW, Palaszynski E, Dy M, Lebel B (1983) Biological properties of homogenous interleukin-3. I. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, P-cell stimulating factor activity, colony stimulating factor activity and histamine producing cell stimulating factor activity. J Immunol 131:282–287.PubMedGoogle Scholar
  55. Ihle JN, Rein A, Mural R (1984) Immunological and virological mechanisms in retrovirus induced murine leukemogenesis. In: Klein G (ed) Advances in viral oncology, vol 4. Raven, New York, pp 95–137.Google Scholar
  56. Ihle JN, Silver J, Kozak CA (1987) Genetic mapping of the mouse interleukin 3 gene to chromosome 11. J Immunol 138:3051–3054.PubMedGoogle Scholar
  57. Ikebuchi K, Wong GG, Clark SC, Ihle JN, Hirai Y, Ogawa M (1987) Interleukin 6 enhancement of interleukin 3-dependent proliferation of multipotential hemopoietic progenitors. Proc Natl Acad Sci USA 84:9035–9039.PubMedCrossRefGoogle Scholar
  58. Isfort R, Huhn RD, Frackelton AR Jr, Ihle JN (1988) Stimulation of factor-dependent myeloid cell lines with IL-3 induces tyrosine phosphorylation of several cellular substrates. J Biol Chem 263:19 203–19 209. Google Scholar
  59. Isfort RJ, Abraham R, May WS, Stevens DA, Frackelton AR Jr, Ihle JN (1988a) Mechanisms in interleukin-3 dependent growth of factor dependent myeloid leukemia cell lines. In: Ross R, Burgess T, Hunter T (eds) Growth factors and their receptors: genetic control and rational application. Liss, New York (in press).Google Scholar
  60. Isfort RJ, Stevens D, May WS, Ihle JN (1988b) IL-3 binding to a 140 kd phosphotyrosine containing cell surface protein. Proc Natl Acad Sci USA 85:7982–7986.PubMedCrossRefGoogle Scholar
  61. Joyner A, Keller G, Phillips RA, Bernstein A (1983) Retrovirus transfer of a bacterial gene into mouse haematopoietic progenitor cells. Nature 305:556–558.PubMedCrossRefGoogle Scholar
  62. Kalland T (1987) Physiology of natural killer cells. In vivo regulation of progenitors by interleukin 3. J Immuno1139:3671–3675. Google Scholar
  63. Keller G, Paige G, Gilboa E, Wagner EF (1985) Expression of a foreign gene in myeloid and lymphoid cells derived from multipotent haematopoietic precursors. Nature 318:149–154.PubMedCrossRefGoogle Scholar
  64. Kelly K, Cochran B, Stiles CD, Leder P (1983) Cell-specific regulation of the c-myc gene by lymphocyte mitogens and platelet-derived growth factor. Cell 35:603–610.PubMedCrossRefGoogle Scholar
  65. Kelso A, Owens T (1988) Production of two hemopoietic growth factors is differentially regulated in single T lymphocytes activated with an anti-T cell receptor antibody. J Immuno1140:1159–1167.Google Scholar
  66. Kerkhofs H, Hagemeijer A, Leeksma CHW, Abels J, Den Ottolander GJ, Somers R, Gerrits WBJ, Langenhuiyen MMA, Von DenBorne AEG, VanHemel JO, Geraedts JPM (1982) The 5q-chromosome abnormality in hematologic disorders: a collaborative study of 34 cases form the Netherlands. Br J Haemato152:365–381.CrossRefGoogle Scholar
  67. Kimoto M, Kindler V, Higaki M, Ody C, Izui S, Vassalli P (1988) Recombinant murine IL-3 fails to stimulate T or B lymphopoiesis in vivo, but enhances immune responses to T cell-dependent antigens. J Immunol 140:1889–1894.PubMedGoogle Scholar
  68. Kindler V, Thorens B, de Kossodo S, Allet B, Eliason JF, Thatcher D, Farber N, Vassalli P (1986) Stimulation of hematopoiesis in vivo by recombinant bacterial murine interleukin 3. Proc Natl Acad Sci USA 83:1001–1005.PubMedCrossRefGoogle Scholar
  69. Kipreos ET, Wang JYJ (1988) Reversible dependence on growth factor interleukin-3 in myeloid cells expressing temperature sensitive v-abl oncogene. Oncogene Res 2:277–284.PubMedGoogle Scholar
  70. Kitamura T, Tange T, Chiba S, Kuwaki T, Mitani K, Urabe A, Takaku F (1989) Establishment and characterization of a unique human cell line that proliferates dependently on GM-CSF, IL-3 or erythropoietin. Blood 73:375–380.PubMedGoogle Scholar
  71. Koeffler HP, Gasson J, Ranyard J, Souza L, Shepard M, Munker R (1987) Recombinant human TNF a stimulates production of granulocyte colony-stimulating factor. Blood 70:55–59.PubMedGoogle Scholar
  72. Koike K, Ogawa M, Ihle JN, Miyake T, Shimizu T, Miyajima A, Yokota T, Arai K (1987) Recombinant murine granulocyte-macrophage (GM) colony-stimulating factor supports formation of GM and multipotential blast cell colonies in culture: comparison with the effects of interleukin-3. J Cell Physio1131:458–464.CrossRefGoogle Scholar
  73. Koyasu SA, Tojo A, Miyajima A, Akiyama T, Kasuga M, Urabe A, Schreurs J, Arai K, Takaku F, Yahara I (1988) Interleukin 3-specific tyrosine phosphorylation of a membrane glycoprotein of M 150 000 in multi-factor-dependent myeloid cell lines. EMBO J 6:3979–3984.Google Scholar
  74. Lange B, Valtieri M, Caracciolo D, Mavilio F, Gemperlein I, Griffin C, Emanuel B, Finan J, Nowell P, Rovera G (1987) Growth factor requirements for childhood leukemia: establishment of GM-CSF-dependent cell lines. Blood 70:192–199.PubMedGoogle Scholar
  75. Lau LF, Nathans D (1985) Identification of a set of genes expressed during the GO/G1 transition of cultured mouse cells. EMBO J 4:3145–3151.PubMedGoogle Scholar
  76. Lau LF, Nathans D (1987) Expression of a set of growth-related immediate early genes in Balb/c 3T3 cells: Coordinate regulation with c-fos and c-myc. Proc Natl Acad Sci USA 84:1182–1186.PubMedCrossRefGoogle Scholar
  77. Leary AG, Yang Y-C, Clark SC, Gasson JC, Golde DW, Ogawa M (1988) Recombinant gibbon interleukin-3 (IL-3) supports formation of human multilineage colonies and blast cell colonies in culture: comparison with recombinant human granulocytic-macrophage colony-stimulating factor (GM-CSF): Blood 71:1759–1763. Google Scholar
  78. Le Beau MM (1987) Cytogenetic and molecular analysis of the del(5q) in myeloid disorders: evidence for the involvement of colony-stimulating factor and fms genes. In: Gale RP, Golde DW (eds) Recent advances in leukemia and lymphoma. Liss, New York, pp 71–81.Google Scholar
  79. Le Beau MM, Epstein ND, O’Brien SJ, Nienhuis AW, Yang YC, Clark SC, Rowley JD (1987) The interleukin 3 gene is located on human chromosome 5 and is deleted in myeloid leukemias with a deletion of 5q. Proc Natl Acad Sci USA 84: 5913–5917.PubMedCrossRefGoogle Scholar
  80. Lee F, Yokota T, Otsuka T, Meyerson P, Villaret D, Coffman R, Mosmann T, Rennick D, Roehm N, Smith C, Zlotnik A, Arai K (1986) Isolation and characterization of a mouse interleukin cDNA clone that expresses B-cell stimulatory factor 1 activities and T-cell- and mast-cell-stimulating activities. Proc Natl Acad Sci USA 83:2061–2065.PubMedCrossRefGoogle Scholar
  81. Lee F, Abrams J, Arai K et al. (1988) The expression and characterization of recombinant mouse IL-3. In: Schrader JW (ed) Lymphokines 15. Interleukin 3: the panspecific hemopoietin. Academic, New York, pp 163–182.Google Scholar
  82. Lee JC, Hapel AJ, Ihle JN (1982) Constitutive production of a unique lymphokine (IL3) by the WEHI-3 cell line. J Immuno1128:2392–2398.Google Scholar
  83. Lee M, Segal GM, Bagby GC (1987) Interleukin-1 induces human bone marrowderived fibroblasts to produce multilineage hematopoietic growth factors. Exp Hematol 15:983–988.PubMedGoogle Scholar
  84. Le Gros GS, Gillis S, Watson JD (1985) Induction of IL2 responsiveness in a murine IL3-dependent cell line. J Immunol 135:4009–4014.PubMedGoogle Scholar
  85. Le Gros GS, Shackell P, Le Gros JE, Watson JD (1987) Interleukin 2 regulates the expression of IL2 receptors on Interleukin 3-dependent bone marrow-derived cell lines. J Immuno1138:478–483.Google Scholar
  86. Le Gros JE, Jenkins DR, Prestidge RL, Watson JD (1987) Expression of genes in cloned murine cell lines that can be maintained in both interleukin 2- and interleukin 3-dependent growth states. Immunol Cell Biol 65:57–69.PubMedCrossRefGoogle Scholar
  87. Lemischka IR, Raulet DH, Mulligan RC (1986) Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45:917–927.PubMedCrossRefGoogle Scholar
  88. Leung DW, Spencer SA, Cachianes G, Hammonds RG, Collins C, Henzel WJ, Barnard R, Waters MJ, Wood WI (1987) Growth hormone receptor and serum binding protein: purification, cloning and expression. Nature 330:537–543.PubMedCrossRefGoogle Scholar
  89. Li CL, Culter RL, Johnson GR (1987) Characterization of hemopoietic activities in media conditioned by a murine marrow-derived adherent cell line, B. Ad. Exp Hemato115:373–381.Google Scholar
  90. Lord BI, Molineux G, Testa NG, Kelly M, Spooncer E, Dexter TM (1986) The kinetic response of haemopoietic precursor cells, in vivo, to highly purified, recombinant interleukin-3. Lymphokine Res 5:97–104.PubMedGoogle Scholar
  91. Lutzker S, Rothman P, Pollock R, Coffman R, Alt FA (1988) Mitogen- and IL-4regulated expression of germ-line IG y2b transcripts: evidence for directed heavy chain class switching. Cell 53:177–184.PubMedCrossRefGoogle Scholar
  92. May WS, Ihle JN (1986) Affinity isolation of the interleukin-3 surface receptor. Biochem Biophys Res Commun 135:870–879.PubMedCrossRefGoogle Scholar
  93. Messner HA, Yamasaki K, Jamal N, Minden MM, Yang YC, Wong GG, Clark SC (1987) Growth of human hemopoietic colonies in response to recombinant gibbon interleukin 3: comparison with human recombinant granulocyte and granulocyte-macrophage colony-stimulating factor. Proc Natl Acad Sci USA 84: 6765–6769.PubMedCrossRefGoogle Scholar
  94. Metcalf D, Begley CG, Johnson GR, Nicola NA, Lopez AF, Williamson DJ (1986) Effects of purified bacterially synthesized murine multi-CSF (IL-3) on hematopoiesis in normal adult mice. Blood 68:46–57.PubMedGoogle Scholar
  95. Miyajima A, Schreurs J, Otsu K, Kondo A, Arai K, Maeda S (1987) Use of the silkworm, Bombyx mori, and an insect baculovirus vector for high-level expression and secretion of biologically active mouse interleukin-3. Gene 58:273–281.PubMedCrossRefGoogle Scholar
  96. Miyajima A, Miyatake S, Schreurs J, DeVries J, Arai N, Yokota T, Arai K (1988) Coordinate regulation of immune and inflammatory responses by T cell-derived lymphokines. FASEB J 2:2462–2473.PubMedGoogle Scholar
  97. Miyatake S, Yokota T, Lee F, Arai K (1985) Structure of the chromosomal gene for murine interleukin 3. Proc Natl Acad Sci USA 82:316–320.PubMedCrossRefGoogle Scholar
  98. Moreau-Gachelin F, Tavitian A, Tambourin P (1988) Spi-1 is a putative oncogene in virally induced murine erythroleukaemias. Nature 331:277–280.PubMedCrossRefGoogle Scholar
  99. Morishita K, Parker DS, Mucenski ML, Copeland NG, Ihle JN (1988) Retroviral activation of a novel gene encoding a zinc finger protein in IL-3-dependent myeloid leukemia cell lines. Cell 54:831–840.PubMedCrossRefGoogle Scholar
  100. Morla AO, Schreurs J, Miyajima A, Wang JWJ (1988) Hematopoietic growth factors activate the tyrosine phosphorylation of distinct sets of proteins in interleukin-3dependent murine cell lines. Mol Cell Bio18:2214–2218.Google Scholar
  101. Mosmann T, Cherwinski H, Bond M, Giedlin M, Coffman R (1986a) Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol 136:2438–2457.Google Scholar
  102. Mosmann TR, Bond MW, Coffman RL, Ohara J, Paul WE (1986b) T-cell and mast cell lines respond to B-cell stimulatory factor 1. Proc Natl Acad Sci USA 83:5654–5658.PubMedCrossRefGoogle Scholar
  103. Mucenski ML, Taylor BA, Ihle JN, Hartley JW, Morse HC III, Jenkins NA, Copeland NG (1988 a) Identification of a common ecotropic viral integration site, Evi-1, in the DNA of AKXD murine myeloid tumors. Mol Cell Bio18:301–308.Google Scholar
  104. Mucenski ML, Taylor BA, Copeland NG, Jenkins NA (1988 b) Chromosomal location of Evi-1, A common site of ecotropic viral integration in AKXD murine myeloid tumors. Oncogene Res 2:219–233.PubMedGoogle Scholar
  105. Munker R, Gasson J, Ogawa M, Koeffler HP (1986) Recombinant human TNF induces production of granulocyte-monocyte colony-stimulating factor. Nature 323:79–82.PubMedCrossRefGoogle Scholar
  106. Nakahata T, Ogawa M (1982) Identification in culture of a class of hemopoietic colony-forming units with extensive capability of self-renewal and generate multipotential hemopoietic colonies. Proc Natl Acad Sci USA 79:3843–3847.PubMedCrossRefGoogle Scholar
  107. Nakahata T, Gross AJ, Ogawa M (1982) A stochastic model of self-renewal and commitment to differentiation of the primitive hemopoietic stem cells in culture. J Cell Physio1113:455–458.CrossRefGoogle Scholar
  108. Nakahata T, Kobayashi T, Ishiguro A, Tsuji K, Naganuma K, Ando O, Yagi Y, Tadokoro K, Akabane T (1986) Extensive proliferation of mature connective-tissue type mast cells in vitro. Nature 324:65–67.PubMedCrossRefGoogle Scholar
  109. Naparstek E, Pierce J, Metcalf D, Shadduck R, Ihle J, Leder A, Sakakeeny MA, Wagner K, Falco J, Fitz Gerald TJ et al. (1986) Induction of growth alterations in factordependent hematopoietic progenitor cell lines by cocultivation with irradiated bone marrow stromal cell lines. Blood 67:1395–1403.PubMedGoogle Scholar
  110. Nicola NA, Metcalf D (1985) Binding of iodinated multipotential colony-stimulating factor to normal murine hemopoietic cells. J Cell Physiol 124:313.PubMedCrossRefGoogle Scholar
  111. Nicola NA, Peterson L (1986) Identification of distinct receptors for two hemopoietic growth factors (Granulocyte colony-stimulating factor and multipotential colonystimulating factor) by chemical cross-linking. J Biol Chem 261:12 384–12 389. Google Scholar
  112. Nienhuis AW, Bunn HF, Turner PH, Gopal TV, Nash WG, O’Brien SJ, Sherr CJ (1985) Expression of the human c-fms proto-oncogene in hematopoietic cells and its deletion in the 5q-syndrome. Cell 42:421–428.PubMedCrossRefGoogle Scholar
  113. Orosz CG, Roopernian DC, Bach FH (1983) Phorbol myristate acetate and in vitro T lymphocyte function. I. PMA may contaminate lymphokine preparations and can interfere with interleukin bioassays. J Immunol 130:1764–1772.Google Scholar
  114. Otsu K, Nakano T, Kanakura Y, Asai H, Katz HR, Austen KF, Stevens RL, Galli SJ, Kitamura Y (1987) Phenotypic changes of bone marrow-derived mast cells after intraperitoneal transfer into W/Wv mice that are genetically deficient in mast cells. J Exp Med 165:615–627.PubMedCrossRefGoogle Scholar
  115. Overell RW, Watson JD, Gallis B, Weisser KE, Cosman D, Widmer MB (1987) Nature and specificity of lymphokine independence induced by a selectable retroviral vector expressing v-src. Mol Cell Biol 7:3394–3401.PubMedGoogle Scholar
  116. Palacios R (1985) Cyclosporin A inhibits antigen- and lectin-induced but not constitutive production of interleukin 3. Eur J Immunol 15:204–206.PubMedCrossRefGoogle Scholar
  117. Palacios R, Garland J (1984) Distinct mechanisms may account for the growthpromoting activity of interleukin 3 on cells of lymphoid and myeloid origin. Proc Natl Acad Sci USA 81:1208–1211.PubMedCrossRefGoogle Scholar
  118. Palacios R, Steinmetz M (1985) IL-3-dependent mouse clones that express B-220 surface antigen, contain Ig genes in germ-line configuration, and generate B lymphocytes in vivo. Cell 41:727–734.PubMedCrossRefGoogle Scholar
  119. Palacios R, Von Boehmer H (1986) Requirements for growth of immature thymocytes from fetal and adult mice in vitro. Eur J Immunol 16:12–19.PubMedCrossRefGoogle Scholar
  120. Palacios R, Henson G, Steinmetz M, McKearn JP (1984) Interleukin-3 supports growth of mouse pre-B-cell clones in vitro. Nature 309:126–129.PubMedCrossRefGoogle Scholar
  121. Palacios R, Neri T, Brockhaus M (1986) Monoclonal antibodies specific for interleukin 3-sensitive murine cells. J Exp Med 163:369–382.PubMedCrossRefGoogle Scholar
  122. Palacios R, Kiefer M, Brockhaus M, Karjalainen K, Dembic Z, Kisielow P, Von Boehmer H (1987) Molecular, cellular, and functional properties of bone marrow T lymphocyte progenitor clones. J Exp Med 166:12–32.PubMedCrossRefGoogle Scholar
  123. Palaszynski EW, Ihle JN (1984) Evidence for specific receptors for interleukin 3 on lymphokine dependent cell lines established from long-term bone marrow cultures. J Immunol 132:1872–1878.PubMedGoogle Scholar
  124. Park LS, Friend D, Gillis S, Urdal DL (1986) Characterization of the cell surface receptor for a multi-lineage colony-stimulating factor (CSF-2a). J Biol Chem 261:205–210.PubMedGoogle Scholar
  125. Pettenati MJ, Le Beau MM, Lemons RS, Shima EA, Kawasaki ES, Larson RA, Sherr CJ, Diaz MO, Rowley JD (1987) Assignment of CSF-1 to 5833.1: evidence for clustering of genes regulating hematopoiesis and for their involvement in the deletion of the long arm of chromosome 5 in myeloid disorders. Proc Natl Acad Sci USA 84:2970–2974.PubMedCrossRefGoogle Scholar
  126. Pierce JH, Di Fiore PP, Aaronson SA, Potter M, Pumphrey J, Scott A, Ihle N (1985) Neoplastic transformation of mast cells by Abelson-MuLV: abrogation of IL-3 dependence by a nonautocrine mechanism. Cell 41:685–693.PubMedCrossRefGoogle Scholar
  127. Pierce JH, Ruggiero M, Fleming TP, Di Fiore PP, Greenberger JS, Varticovski L, Schlessinger J, Rovera G, Aaronson SA (1988) Signal transduction through the EGF receptor transfected in IL-3-dependent hematopoietic cells. Science 239:628–631.PubMedCrossRefGoogle Scholar
  128. Prystowsky MB, Ely JM, Beller DI, Eisenberg L, Goldman J, Goldman M, Goldwasser E, Ihle J, Quintans J, Remold H, Vogel S, Fitch FW (1982) Alloreactive cloned T cell lines. VI. Multiple lymphokine activities secreted by cloned T lymphocytes. J Immunol 129:2337–2344.Google Scholar
  129. Prystowsky MB, Otten G, Naujokas MF, Vardiman J, Ihle JN, Goldwasser E, Fitch FW (1984) Multiple hemopoietic lineages are found after stimulation of mouse bone marrow precursor cells with interleukin 3. Am J Patho1117:171–179.Google Scholar
  130. Quesenberry PJ, Ihle JN, McGrath E (1985) The effect of interleukin 3 and GM-CSA-2 on megakaryocyte and myeloid clonal colony formation. Blood 65:214–217.PubMedGoogle Scholar
  131. Rapp UR, Cleveland JL, Brightman K, Scott A, Ihle JN (1985) Abrogation of IL-3 and IL-2 dependence by recombinant murine retroviruses expressing v-myc oncogenes. Nature 317:434–438.PubMedCrossRefGoogle Scholar
  132. Razin E, Stevens RL, Akiyama F, Schmid K, Austen KF (1982) Culture from mouse bone marrow of a subclass of mast cells possessing a distinct chondroitin sulfate proteoglycan with glycosaminoglycans rich in N-acetylgalactosamine-4,6-disulfate. J Biol Chem 257:7229–7239.PubMedGoogle Scholar
  133. Razin E, Ihle JN, Seldin D, Mencia-Huerta J-M, Katz HR, LeBlance A, Hein A, Caulfield JP, Austen KF, Stevens RL (1984) Interleukin 3: a differentiation and growth factor for the mouse mast cell that contains chondroitin sulfate E proteoglycan. J Immunol 132:1479–1486.PubMedGoogle Scholar
  134. Rein A, Keller J, Schultz AM, Holmes KL, Medicus R, Ihle JN (1985) Infection of immune mast cells by Harvey sarcoma virus: immortalization without loss of requirement for interleukin-3. Mol Cell Biol 5:2257–2264.PubMedGoogle Scholar
  135. Rennick DM, Lee FD, Yokota T, Arai KI, Cantor H, Nabel GJ (1985) A cloned MCGF cDNA encodes a multilineage hematopoietic growth factor: multiple activities of interleukin 3. J Immuno1134:910–914.Google Scholar
  136. Rennick D, Yang G, Muller-Sieburg C, Smith C, Arai N, Takabe Y, Gemmell L (1987) Interleukin 4 (B-cell stimulatory factor 1) can enhance or antagonize the factordependent growth of hemopoietic progenitor cells. Proc Natl Acad Sci USA 84:6889–6893.PubMedCrossRefGoogle Scholar
  137. Rittling SR, Baserga R (1987) Regulatory mechanisms in the expression of cell cycle dependent genes. Anticancer Res 7:541–552.PubMedGoogle Scholar
  138. Robinson BE, McGrath HE, Quesenberry PJ (1987) Recombinant murine granulocyte macrophage colony-stimulating factor has megakaryocyte colony-stimulating activity and augments megakaryocyte colony stimulation by interleukin 3. J Clin Invest 79:1648–1652.PubMedCrossRefGoogle Scholar
  139. Rossio JL, Ruscetti FW, Farrar WL (1986) Ligand-specific calcium mobilization in IL 2 and IL 3 dependent cell lines. Lymphokine Res 5:163–172.PubMedGoogle Scholar
  140. Rosson D, Reddy EP (1987) Mechanism of activation of the myb oncogene in myeloid leukemias. Ann NY Acad Sci 511:219–231.PubMedCrossRefGoogle Scholar
  141. Rosson D, Dugan D, Reddy EP (1987) Aberrant splicing events that are induced by proviral integration: implications for myb oncogene activation. Proc Natl Acad Sci USA 84:3171–3175.PubMedCrossRefGoogle Scholar
  142. Rovera G, Valtieri M, Mavilio F, Reddy EP (1987) Effect of Abelson murine leukemia virus on granulocytic differentiation and interleukin-3 dependence of a murine progenitor cell line. Oncogene 1:29–35.PubMedGoogle Scholar
  143. Sanderson CJ, Warren DJ, Strath M (1985a) Identification of a lymphokine that stimulates eosinophil differentiation in vitro. Its relationship to interleukin 3, and functional properties of eosinophils produced in cultures. J Exp Med 162:60–74.PubMedCrossRefGoogle Scholar
  144. Sanderson CJ, Strath M, Warren DJ, O’Garra A, Kirkwood TB (1985 b) The production of lymphokines by primary alloreactive T-cell clones: a co-ordinate analysis of 233 clones in seven lymphokine assays. Immunology 56:575–584.PubMedGoogle Scholar
  145. Sanderson CJ, Campbell HD, Young IG (1988) Molecular and cellular biology of eosinophil differentiation factor (interleukin-5) and its effects on B cells in man and mouse. Immunol Rec 102:29–50.CrossRefGoogle Scholar
  146. Schwarzbaum S, Halpern R, Diamond B (1984) The generation of macrophage-like cell lines by transfection with SV40 origin defective DNA. J Immuno1132:1158–1162 Seger R, Yarden Y, Kashles O, Goldblatt D, Schlessinger J, Shaltiel S (1988) The epidermal growth factor receptor as a substrate for a kinase-splitting membranal proteinase. J Biol Chem 263:3496–3500.Google Scholar
  147. Shannon MF, Gamble JR, Vadas MA (1988) Nuclear proteins interacting with the promoter region of the human granulocyte/macrophage colony-stimulating factor gene. Proc Natl Acad Sci USA 85:674–678.PubMedCrossRefGoogle Scholar
  148. Shen-Ong GL, Morse HC III, Potter M, Mushinski JF (1986) Two modes of c-myb activation in virus-induced mouse myeloid tumors. Mol Cell Biol 6:380–392 [published erratum appears in Mol Cell Biol 1986:2756]. PubMedGoogle Scholar
  149. Sideras P, Palacios R (1987) Bone marrow pro-T and pro-B lymphocyte clones express functional receptors for interleukin (IL) 3 and IL 4/BSF-1 and nonfunctional receptors for IL 2. Eur J Immunol 17:217–221.PubMedCrossRefGoogle Scholar
  150. Smith CA, Rennick DM (1986) Characterization of a murine lymphokine distinct from interleukin 2 and interleukin 3 (IL-3) possessing a T-cell growth factor activity and a mast-cell growth factor activity that synergizes with IL-3. Proc Natl Acad Sci USA 83:1857–1861.PubMedCrossRefGoogle Scholar
  151. Sokal G, Michaux JL, VanDenBergh H, Cordier A, Rodhain J, Ferrant A, Moriau M, Debruyere M, Sonnet J (1975) A new hematologic syndrome with a distinct karyotype: the 5q-chromosome. Blood 45:519–533.Google Scholar
  152. Sorensen P, Farber NM, Krystal G (1986) Identification of the interleukin-3 receptor using an iodinatable cleavable, photoreactive cross-linking agent. J Biol Chem 261:9094–9097.PubMedGoogle Scholar
  153. Sparrow RL, Swee-Huat O, Williams N (1987) Haemopoietic growth factors stimulating murine megakaryocytopoiesis: interleukin-3 is immunologically distinct from megakaryocyte-potentiator. Leuk Res 11:31–36.PubMedCrossRefGoogle Scholar
  154. Spivak JL, Smith RR, Ihle JN (1985) Interleukin 3 promotes the in vitro proliferation of murine pluripotent hematopoietic stem cells. J Clin Invest 76:1613–1621.PubMedCrossRefGoogle Scholar
  155. Stocking C, Loliger C, Kawai M, Suciu S, Gough N, Ostertag W (1988) Identification of genes involved in growth autonomy of hematopoietic cells by analysis of factorindependent mutants. Cell 53:869–879.PubMedCrossRefGoogle Scholar
  156. Suda T, Suda J, Ogawa M (1983) Proliferative kinetics and differentiation of murine blast cell colonies in culture: evidence for variable GO periods and constant doubling rates of early pluripotent hemopoietic progenitors. J Cell Physiol 117: 308–318.PubMedCrossRefGoogle Scholar
  157. Suda T, Suda J, Ogawa M, Ihle JN (1985) Permissive role of interleukin 3 (IL-3) in proliferation and differentiation of multipotential hemopoietic progenitors in culture. J Cell Physio1124:182–190.CrossRefGoogle Scholar
  158. Suda T, Suda J, Kajigaya S, Nagata S, Asano S, Saito M, Miura Y (1987) Effects of recombinant murine granulocyte colony-stimulating factor on granulocytemacrophage and blast colony formation. Exp Hematol 15:958–965.PubMedGoogle Scholar
  159. Sugawara M, Hattori C, Tezuka E, Tamura S, Ohta Y (1988) Monoclonal autoantibodies with interleukin 3-like activity derived from a MRL/lpr mouse. J Immunol 140:526–530.PubMedGoogle Scholar
  160. Sukhatme VP, Kartha S, Toback FG, Taub R, Hoover RG, Tasi-Morris C-H (1987) A novel early growth response gene rapidly induced by fibroblast, epithelial and lymphocyte mitogens. Oncogene Res 1:343–355.PubMedGoogle Scholar
  161. Sutherland GR, Baker E, Callen DF, Campbell HD, Young IG, Sanderson CJ, Garson OM, Lopez AF, Vadas MA (1988) Interleukin-5 is at 5831 and is deleted in the 5qsyndrome. Blood 71:1150–1152.PubMedGoogle Scholar
  162. Tinegate H, Gaunt L, Hamilton PJ (1983) The 5q-syndrome: an underdiagnosed form of macrocytic anemia. Br J Haematol 54:103–110.PubMedCrossRefGoogle Scholar
  163. Todokoro K, Yamamoto A, Amanuma H, Ikawa Y (1985) Isolation and characterization of a genomic DDD mouse interleukin-3 gene. Gene 39:103–107.PubMedCrossRefGoogle Scholar
  164. Tsao CJ, Tojo A, Fukamachi H, Kitamura T, Saito T, Urabe A, Takaku F (1988) Expression of the functional erythropoietin receptors on interleukin 3-dependent murine cell lines. J Immunol 140:89–93.PubMedGoogle Scholar
  165. Valtieri M, Santoli D, Caracciolo D, Kreider BL, Altmann SW, Tweardy DJ, Gemperlein 1, Mavilio F, Lange B, Rovera G (1987) Establishment and characteristics of an undifferentiated human T leukemia cell line which requires GM-CSF for growth. J Immuno1138:4042–4050.Google Scholar
  166. Vellenga E, Griffin JD (1987) The biology of acute myeloblastic leukemia. Semin Oncol 14:365–371.PubMedGoogle Scholar
  167. Vellenga E, Ostapovicz D, O’Rourke B, Griffin JD (1987 a) Effects on recombinant IL3, GM-CSF, and G-CSF on proliferation of leukemic clonogenic cells in short-term and long-term cultures. Leukemia 1:584–589.PubMedGoogle Scholar
  168. Vellenga E, Young DC, Wagner K, Wiper D, Ostapovicz D, Griffin JD (1987 b) The effects of GM-CSF and G-CSF in promoting growth of clonogenic cells in acute myeloblastic leukemia. Blood 69:1771–1776.PubMedGoogle Scholar
  169. Walker F, Nicola NA, Metcalf D, Burgess AW (1985) Hierarchical down-modulation of hemopoietic growth factor receptors. Cell 43:269–276.PubMedCrossRefGoogle Scholar
  170. Warren DJ, Moore MA (1988) Synergism among interleukin 1, interleukin 3, and interleukin 5 in the production of eosinophils from primitive hemopoietic stem cells. J Immunol 140:94–99.PubMedGoogle Scholar
  171. Warren HS, Hargreaves J, Hapel AJ (1985) Some interleukin-3 dependent mast-cell lines also respond to interleukin-2. Lymphokine Res 4:195–204.PubMedGoogle Scholar
  172. Watson JD, Le Gros GS, Overell RW, Conlon P, Widmer M, Gillis S (1987) Effect of infection with murine recombinant retroviruses containing the v-src oncogene on interleukin 2- and interleukin 3-dependent growth states. J Immunol 139:123–129 Watson JD, Jenkins DR, Eszes M, Leung E (1988) Effect of granulocyte-macrophage colony-stimulating factor and interleukin 3 on the v-src oncogene. Inhibition of tyrosine kinase activity in the absence of changes in gene expression. J Immunol 140:501–507.Google Scholar
  173. Weinstein Y, Ihle JN, Lavu S, Reddy EP (1986) Truncation of the c-myb gene by a retroviral integration in an interleukin-3 dependent myeloid leukemia cell line. Proc Natl Acad Sci USA 83:5010–5014.PubMedCrossRefGoogle Scholar
  174. Weinstein Y, Cleveland JL, Askew DS, Rapp UR, Ihle JN (1987) Insertion and truncation of c-myb by MuLV in a myeloid cell line derived from cultures of normal hematopoietic cells. J Viro161:2339–2343.Google Scholar
  175. Wheeler EF, Askew D, May S, Ihle JN, Sherr CJ (1987) The v-fms oncogene induces factor-independent growth and transformation of the interleukin-3-dependent myeloid cell line FDC-Pl. Mol Cell Biol 7:1673–1680.PubMedGoogle Scholar
  176. Whetton AD, Dexter TM (1983) Effect of haemopoetic growth factor on intracellular ATP levels. Nature 303:629–631.PubMedCrossRefGoogle Scholar
  177. Whetton AD, Dexter TM (1988) The mode of action of interleukin 3 in promoting survival, proliferation, and differentiation of hemopoietic progenitor cells. In: Schrader JW (ed) Lymphokines 15 Interleukin 3: The panspecific hemopoietin, Academic Press, Inc., New York, p 355–374.Google Scholar
  178. Whetton AD, Heyworth CM, Dexter TM (1986a) Phorbol esters activate protein kinase C and glucose transport and can replace the requirement for growth factor in interleukin-3-dependent multipotent stem cells. J Cell Sci 84:93–104.PubMedGoogle Scholar
  179. Whetton AD, Monk PN, Consalvey SD, Downes CP (1986b) The haemopoietic growth factors interleukin 3 and colony stimulating factor-1 stimulate proliferation but do not induce inositol lipid breakdown in murine bone-marrow-derived macrophages. EMBO J 5:3281–3286.PubMedGoogle Scholar
  180. Williams DA, Lemischka IR, Nathans DG, Mulligan RC (1984) Introduction of new genetic material into pluripotent haematopoietic stem cells of the mouse. Nature 310:47680.Google Scholar
  181. Wisniewski LP, Hirschhorn K (1983) Acquired partial deletions of the long arm of chromosome 5 in hematologic disorders. Am J Hemato115:295–310.CrossRefGoogle Scholar
  182. Yamaguchi Y, Suda T, Suda J, Eguchi M, Miura Y, Harada N, Tominaga A, Takatsu K (1988) Purified interleukin 5 supports the terminal differentiation and proliferation of murine eosinophilic precursors. J Exp Med 167:43–56.PubMedCrossRefGoogle Scholar
  183. Yang YC, Clark SC (1988) Molecular cloning of a primate cDNA and the human gene for interleukin 3. In: Schrader JW (ed) Lymphokines 15. Interleukin 3: the panspecific hemopoietin. Academic, New York, pp 375–391. Google Scholar
  184. Yang YC, Ciarletta AB, Temple PA, Chung MP, Kovacic S, Witek-Giannotti JS, Leary AC, Kriz R, Donahue RE, Wong GG, Clark SC (1986) Human IL-3 (multiCSF): identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47:3–10.PubMedCrossRefGoogle Scholar
  185. Yang YC, Kovacic S, Kriz R, Wolf S, Clark SC, Wellems TE, Nienhuis A, Epstein H (1988a) The human genes for GM-CSF and IL-3 are closely linked in tandem on chromosome 5. Blood 71:958–961.PubMedGoogle Scholar
  186. Yang YC, Tsai S, Wong GG, Clark SC (1988b) Interleukin-1 regulation of hematopoietic growth factor production by human stromal fibroblasts. J Cell Physio1134:292–296.CrossRefGoogle Scholar
  187. Ymer S, Tucker WQ, Anderson CJ, Hapel AJ, Campbell HD, Young IG (1985) Constitutive synthesis of interleukin-3 by leukaemia cell line WEHI-3B is due to retroviral insertion near the gene. Nature 317:255–258.PubMedCrossRefGoogle Scholar
  188. Yokota T, Lee F, Rennick D, Hall C, Arai N, Mosmann T, Nabel G, Cantor H, Arai K (1984) Isolation and characterization of a mouse cDNA clone that expresses mastcell growth-factor activity in monkey cells. Proc Natl Acad Sci USA 81:1070–1074.PubMedCrossRefGoogle Scholar
  189. Zucali JR, Dinarello CA, Oblon DJ, Gross MA, Anderson L, Weiner RS (1986) Interleukin 1 stimulates fibroblasts to produce granulocyte-macrophage colonystimulating activity and prostaglandin E2. J Clin Invest 77:1857–1863.PubMedCrossRefGoogle Scholar
  190. Zumstein P, Stiles CD (1987) Molecular cloning of gene sequences that are regulated by insulin-like growth factor I. J Biol Chem 262:11252–11260.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • J. N. Ihle

There are no affiliations available

Personalised recommendations