Skip to main content

Kinetic Polynomial: A New Concept of Chemical Kinetics

  • Conference paper
Patterns and Dynamics in Reactive Media

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 37))

Abstract

A system of quasi-steady-state equations for a single pathway mechanism of a catalytic reaction can always be reduced to a polynomial in terms of the steady state reaction rate, a kinetic polynomial. The coefficients of this polynomial are polynomials in the parameters of the elementary reaction rates. The form of the lowest coefficient of the polynomial ensures the thermodynamic validity of this form of representation of quasi-steady-state equations. The properties of the kinetic polynomial are discussed in connection with such concepts of chemical kinetics as “molecularity”, “stoichiometric number”.

Possible applications of this form are: asymptotic analysis of steady-state kinetic models as well as analysis of steady-state multiplicity; description of the steady-state dependences of the reaction rate, determining relations between kinetic constants when solving the inverse problem.

On the basis of kinetic polynomial explicit equations for the steady-state rate in case when one of the steps is rate-limiting, and in the neighbourhood of equilibrium have been derived.

Algorithm of computation of the kinetic polynomial and its realisation on the basis of computer algebra are described.

AMS(MOS) subject classifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Horiuti, Theory of reaction rates as based on the stoichiometric number concept, Ann. New York Acad. Sci. 213 (1973), pp. 5–30.

    Article  CAS  Google Scholar 

  2. M.I. Temkin, The kinetics of some industrial heterogeneous catalytic reactions, Adv. in Catalysis 28 (1979), pp. 173–291.

    Article  CAS  Google Scholar 

  3. J. Horiuti, “Reaction kinetics”, Iwanami Book Co., Tokyo (1940).

    Google Scholar 

  4. G.K. Boreskov, The relation between molecularity and activation energies of reaction in forward and back directions, Z. Fiz. Chini. 19 (1945), pp. 92–95.

    CAS  Google Scholar 

  5. S. de Groot and P. Mazur, Nonequilibrium Thermodynamics”, Mir, Moscow (1964).

    Google Scholar 

  6. T. Nacamura, Note on chemical kinetics in the neighbourhood of equilibrium, J. Res. Inst. Catal., Hokkaido Univ. 6 (1958), pp. 20–27.

    Google Scholar 

  7. M. Boudart, “Kinetics of Chemical Processes”, Englewood Cliffs, New Jersey (1968).

    Google Scholar 

  8. S.L. Kiperman, “Introduction to the Kinetics of Heterogeneous Catalytic Reactions”, Nauka, Moscow (1964).

    Google Scholar 

  9. J. Happel, A rate expression in heterogeneous catalysis, Chem. Eng. Sci. 22 (1967), pp. 479–480.

    Article  CAS  Google Scholar 

  10. J. Happel, Comments on Huriuti’s stoichiometric number concept, J. Res. Inst. Catal., Hokkaido Univ. 28 (1980), pp. 185–188.

    CAS  Google Scholar 

  11. M. Boudart, D.G. Loffler and J.C. Gottifredi, Comments on the linear relation between reaction rate and affinity, Int. J. Chem. Kinetics 17 (1985), pp. 1119–1123.

    Article  CAS  Google Scholar 

  12. M.S. Spencer, Thermodynamic constrains on multicomponent catalytic systems. II. Limits to pseudo-mass-action kinetics, J. Catalysis 94 (1985), pp. 148–154.

    Article  CAS  Google Scholar 

  13. E. King and C. Altman, A schematic method of deriving the rate laws for enzyme-catalyzed reactions, J. Phys. Chem. 60 (1956), pp. 1375–1381.

    Article  CAS  Google Scholar 

  14. G.S. Yablonskii, V.I. Bykov and A.N. Gorban, “Kinetic Models of catalytic Reactions”, Nauka, Novosibirsk (1983).

    Google Scholar 

  15. A.G. Kurosh, “Highter Algebra”, Mir, Moscow (1972).

    Google Scholar 

  16. B.L. van der Waerden, “Modern Algebra, Part 2”, Ungar, New York (1970).

    Google Scholar 

  17. G.S. Yablonskii, M.Z. Lazman and V.I. Bykov, Stoichiometric number, molecularity and multiplicity, React. Kinet. Catal. Lett. 20 (1982), pp. 73–77.

    Article  CAS  Google Scholar 

  18. M.Z. Lazman, G.S. Yablonskii, and V.I. Bykov, Steady-state Kinetic equation. Non-linear single pathway mechanism, Sov. J. Chem. Phys. 2 (1985), pp. 404–418.

    Google Scholar 

  19. M.Z. Lazman, G.S. Yablonskii, and V.I. Bykov, Steady-state Kinetic equation. Adsorption mechanism of a catalytic reaction, Sov. J. Chem. Phys. 2 (1985), pp. 693–703.

    Google Scholar 

  20. M.Z. Lazman, S.I. Spivak and G.S. Yablonskii, Kinetic polynomial and the problem of determining relations between kinetic constants when solving the inverse problem, Sov. J. Chem. Phys. 4 (1987), pp. 781–789.

    Google Scholar 

  21. M.Z. Lazman, G.S. Yablonskii, G.M. Vinogradova and L.N. Romanov, Application of the kinetic polynomial to describe steady-state dependence of the reaction rate, Sov. J. Chem. Phys. 4 (1987), pp. 1121–1134.

    Google Scholar 

  22. V.I. Bykov, A.M. Kytmanov, M.Z. Lazman, and G.S. Yablonskii, Resultant of quasi-steady -state equations for a single-route n-stage mechanism, Khim. Fiz. 6 (1987), pp. 1549–1554.

    CAS  Google Scholar 

  23. V.I. Bykov, A.M. Kytmanov, M.Z. Lazman, and G.S. Yablonskii, Kinetic polynomial for one-route n-stage catalytic reaction, In: Mathematical Problems of Chemical Kinetics, Nauka, Novosibirsk (1989), pp. 125–149.

    Google Scholar 

  24. L.A. Aizenberg and A.P. Yuzhakov, “Integral representations and residues in multi-dimensional complex analysis”, Nauka, Novosibirsk (1979).

    Google Scholar 

  25. D.N. Bernstain, The number of the roots of the system of equations, Funct. Anal. Appl. 9 (1975), pp. 1–4.

    Article  Google Scholar 

  26. V.I. Arnol’d, A.N. Varchenko, and S.M. Gusein-zade, “Singularities of differentiating mappings”, Nauka, Moscow (1982).

    Google Scholar 

  27. M.Z. Lazman, “Study of nonlinear kinetic models of heterogeneous catalytic reactions (Dissertation thesis)”, Institute of Catalysis, Novosibirsk (1986).

    Google Scholar 

  28. M.I. Temkin, The kinetics of heterogeneous catalytic reactions, Zh. D.I. Mendeleev Vses. Khim. 20 (1975), pp. 7–14.

    CAS  Google Scholar 

  29. G.S. Yablonskii, V.I. Bykov and V.I. Elokhin, “Kinetics of model Reactions of Heterogeneous Catalysis”, Nauka, Novosibirsk (1983).

    Google Scholar 

  30. T. Poston and I. Stewart, “Catastrophe Theory and Its Applications”, Pitman, London (1978).

    Google Scholar 

  31. M.Z. Lazman, G.S. Yablonskii, and V.A. Sobyanin, Interpretation of breaks on kinetic curves, Kinet. Catal. 27 (1986), pp. 57–63.

    Google Scholar 

  32. M. Vlad and E. Segal, On the kinetic model of the rate-determining step. 1, Rev. Roumaine de Chimie 24 (1979), pp. 799–805.

    CAS  Google Scholar 

  33. M.M. Veinberg and V.A. Trenogin, “Theory of branching of the nonlinear equations solutions”, Nauka, Moscow (1978).

    Google Scholar 

  34. L.A. Aizenberg, V.I. Bykov, A.M. Kytmanov and G.S. Yablonskii, Search for all steady-states of chemical kinetic equations with the modified method of elimination. I. Algorithm, II. Application, Chem. Eng. Sci. 38 (1983), pp. 1555–1568.

    Article  CAS  Google Scholar 

  35. G.E. Forsithe, M. Malcolm and C.B. Moler, “Computer Methods for Mathematical Computations”, Englewood Cliffs, New York (1977).

    Google Scholar 

  36. C.L. Lawson and R.J. Hanson, Solving Least Squares Problems”, Englewood Cliffs, New York (1974).

    Google Scholar 

  37. L.N. Romanov, On recovery of a functional dependence by steep ordering, Preprint No. 372, Computer Centre USSR Acad. Sci., Novosibirsk (1982).

    Google Scholar 

  38. G.P. Mathur and G. Thodos, Initial rate approach in the kinetics of heterogeneous catalytic reactions — an experimental investigation on the sulphur dioxide oxidation reaction, Chem. Eng. Sci. 21 (1966), pp. 1191–1200.

    Article  CAS  Google Scholar 

  39. R.P.L. Absil, J.B. Butt and J.S. Dranoff, On the estimation of catalytic rate equation parameters, J. Catalysis 87 (1984), pp. 530–535.

    Article  CAS  Google Scholar 

  40. S.I. Spivak and V.G. Gorskii, About completeness of available kinetic data when determining kinetic constants of complex chemical reactions, Khim, Fiz. 1 (1982), pp. 237–243.

    Google Scholar 

  41. V.A. Evstigneev and G.S. Yablonskii, Non-identifìability of kinetic model parameters as a consequence of non-Hamiltonial structure of complex reaction graph, Teor. i Eksper. Khimia 6 (1982), pp. 688–694.

    Google Scholar 

  42. V.I. Bykov and A.M. Kytmanov, An algorithm of construction of kinetic polynomial coefficients for non-linear single-route mechanism of catalytic reaction, Preprint No 40M, Institute of Physics USSR Acad. Sci., Krasnoyrsk (1987).

    Google Scholar 

  43. V.I. Bykov and A.M. Kytmanov, About one modification of the method of non-linear algebraic equation system resultant construction, Preprint No 44M, Institute of Physics USSR Acad. Sci., Krasnoyrsk (1988).

    Google Scholar 

  44. B. Buchberger, Grobner bases: an algorithmic method in polynomial ideal theory, CAMP -Publ. Nr 83–290 (1983).

    Google Scholar 

  45. F. Winkler, B. Buchberger, F. Lichtenberger and H. Rolletschk, An algorithm for constructing canonical base of polynomial ideals, ACM Trans. Math. Software 11 (1985), pp. 66–78.

    Article  Google Scholar 

  46. A.C. Hearn, “REDUCE user’s manual. Version 3.2”, Rand Corporation, Santa Monica (1985).

    Google Scholar 

  47. V.I. Bykov, A.M. Kytmanov and M.Z. Lazman, “Methods of elimination in computer algebra of polynomials”, Nauka, Novosibirsk, (to appear) (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this paper

Cite this paper

Lazman, M.Z., Yablonskii, G.S. (1991). Kinetic Polynomial: A New Concept of Chemical Kinetics. In: Aris, R., Aronson, D.G., Swinney, H.L. (eds) Patterns and Dynamics in Reactive Media. The IMA Volumes in Mathematics and its Applications, vol 37. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3206-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3206-3_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7832-0

  • Online ISBN: 978-1-4612-3206-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics