Control of 3β-HSD mRNA and Activity During the Estrous Cycle in the Bovine Ovary

  • J. Couët
  • C. Martel
  • V. Luu-The
  • M.-A. Sirard
  • H. F. Zhao
  • F. Labrie
Part of the Serono Symposia USA book series (SERONOSYMP)

Abstract

Precise programming of the expression of the steroidogenic enzymes in the theca, interstitial, granulosa, and luteal cells of the ovary achieves the physiological pattern of sex steroid secretion observed during the estrous cycle (1, 2). The physiological changes in estrogen and progesterone secretion are accompanied by characteristic morphological modifications reflecting the various stages of the development and growth of ovarian follicles and corpora lutea.

Keywords

Cholesterol Chrome Estrogen Propylene Testosterone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hansel W, Convey EM. Physiology of the estrous cycle. J Anim Sci 1983; 57: 404 – 29.PubMedGoogle Scholar
  2. 2.
    Hsueh AJH. Ovarian hormone synthesis, circulation and mechanism of action. In: De Groot U, Besser GM, Cahill GF, et al., eds. Endocrinology. 2nd ed; vol 3. 1989.Google Scholar
  3. 3.
    Readhead C, Lobo RA, Kletzky DA. The activity of 3β-hydroxy steroid dehydro¬genase and \( \Delta \)4-5 isomerase in human follicular tissue. Am J Obstet Gynecol 1983; 145: 491 – 5.PubMedGoogle Scholar
  4. 4.
    Luu-The V, Lachance Y, Labrie C, et al. Full length cDNA structure and deduced aminoacid sequence of human 3β-hydroxy-5-ene steroid dehydrogenase. Mol Endocrinol 1989; 3: 1310 – 2.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhao HF, Simard J, Labrie C, et al. Molecular cloning, cDNA structure and predicted amino acid sequence of bovine 3β-hydroxy-5-ene-steroid dehydroge- nase/\( \Delta \)4-\( \Delta \)5-isomerase. FEBS Lett 1989; 259: 153 – 7.PubMedCrossRefGoogle Scholar
  6. 6.
    Ishii-Ohba H, Saiki N, Inano H, Tamaoki BI. Purification and properties of testicular 3β-hydroxy-5-ene-steroid dehydrogenase and 5-ene-4-ene isomerase. J Steroid Biochem 1986; 24: 753 – 60.PubMedCrossRefGoogle Scholar
  7. 7.
    Ishii-Ohba H, Inano H, Tamaoki BI. Testicular and adrenal 3β-hydroxy-5-ene- steroid dehydrogenase and 5-ene-4-ene-isomerase. J Steroid Biochem 1987; 27: 775 – 9.PubMedCrossRefGoogle Scholar
  8. 8.
    Lacoste D, Bélanger A, Labrie F. Biosynthesis and degradation of androgens in human prostatic cancer cell lines. In: Bradlow H, Castagnetta L, d’Aquino S, Labrie F, eds. Steroid formation, degradation and action in peripheral, normal and neoplastic tissues. Ann New York Acad Sci 1990;595:389–91.Google Scholar
  9. 9.
    Abul-Hajj YJ. Metabolism of dehydrogenase administration by hormone-dependant and hormone-independant human breast carcinoma. Steroids 1975; 26: 488 – 500.PubMedCrossRefGoogle Scholar
  10. 10.
    Cameron EM, Baillie AM, Grant JK, Milne JA, Thompson J. Transformation in vitro of [7a-3H] dehydroepiandrosterone to [3H] testosterone by skin from men. J Endocrinol 1966;35:xix–xx.Google Scholar
  11. 11.
    Lax ER, Schriefers H. \( \Delta \)4-3β-hydroxy steroid dehydrogenase activity in rat liver. Intracellular distribution and sex dependancy. Acta Endocrinol (Copenh) 1981; 98: 261 – 6.Google Scholar
  12. 12.
    Jung-Testas I, Hu ZY, Baulieu EE, Robel P. Neurosteroids: Biosynthesis of pregnenolone and progesterone in primary cultures of rat glial cells. Endocrinology 1989; 125: 2083 – 91.PubMedCrossRefGoogle Scholar
  13. 12.
    Jung-Testas I, Hu ZY, Baulieu EE, Robel P. Neurosteroids: Biosynthesis of pregnenolone and progesterone in primary cultures of rat glial cells. Endocrinology 1989; 125: 2083 – 91.PubMedCrossRefGoogle Scholar
  14. 14.
    Hiwatashi A, Hamamoto I, Ichikawa Y. Purification and kinetic properties of 3P- hydroxysteroid dehydrogenase from bovine adrenocortical microsomes. J Biochem 1985; 98: 1519 – 26.PubMedGoogle Scholar
  15. 15.
    Rodgers RJ, Waterman MR, Simpson ER. Cytochromes P450scc, P450 17α, adrenoxin and reduced nicotinamide adenine dinucleotide phosphate-cytochrome p450 reductase in bovine follicles and corpora lutea. Changes in specific contents during the ovarian cycle. Endocrinology 1986; 118: 1366 – 74.PubMedCrossRefGoogle Scholar
  16. 16.
    Rodgers RJ, Waterman MR, Simpson ER. Levels of messenger ribonucleic acid encoding cholesterol side-chain cleavage cytochrome P-450, 17α-hydroxylase cytochrome P-450, adrenoxin and low density lipoprotein receptor in bovine follicles and corpora lutea throughout the ovarian cycle. Mol Endocrinol 1987; 1: 274 – 9.PubMedCrossRefGoogle Scholar
  17. 17.
    Rodgers RJ, Mason JI, Waterman MR, Simpson ER. Regulation of the synthesis of 3-hydroxy-3-methylglutamyl coenzyme A reductase in the bovine ovary in vivo and in vitro. Mol Endocrinol 1987; 1: 172 – 80.PubMedCrossRefGoogle Scholar
  18. 18.
    Gore-Lanston RE, Armstrong DT. Follicular steroidogenesis and its control. In: Knobil E, Neill J, eds. The physiology of reproduction; vol 1. New York: Raven Press, 1988: 331.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • J. Couët
  • C. Martel
  • V. Luu-The
  • M.-A. Sirard
  • H. F. Zhao
  • F. Labrie

There are no affiliations available

Personalised recommendations