Advertisement

Sorption and Transport of Gases and Vapors in Plant Cuticles

  • Klaus J. Lendzian
  • Gerhard Kerstiens
Chapter
Part of the Reviews of Environmental Contamination and Toxicology book series (RECT, volume 121)

Abstract

Life arose in water and many plants, notably the algae, are still largely restricted to the aquatic environment. The evolutionary move from an aquatic to a terrestrial existence demanded several structural innovations, for the terrestrial environment was/is in many ways hostile to life. Among the many problems faced by a land plant is the changed water potential gradient between the plant body and the surroundings. It was necessary to build up an effective barrier to prevent excessive loss of water by evaporation. On the other hand it was essential to maintain a sufficiently permeable surface for gas exchange.

Keywords

Partition Coefficient Sulfur Dioxide Nitrogen Dioxide Leaf Cuticle Cuticular Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aharoni SM (1976) Molecular stiffness and thermal properties of polymers. J Appl Polym Sci 20: 2863–2869.CrossRefGoogle Scholar
  2. Andrich G, Fiorentini R, Tuci A, Galoppini C (1989) Skin permeability to oxygen in apples stored in controlled atmosphere. J Am Soc Hort Sci 114: 770–775.Google Scholar
  3. Arber A (1920) Water plants. University Press, Cambridge.Google Scholar
  4. Arndt U, Seufert G, Nobel W (1982) Die Beteiligung von Ozon an der Komplexkrankheit der Tanne (Abies alba Mill.)—eine prüfenswerte Hypothese. Staub Reinh Luft 42: 243–246.Google Scholar
  5. Aronhime MT, Neumann S, Marom G (1987) The anisotropic diffusion of water in Kevlar-epoxy composites. J Mat Sci 22: 2435–2446.CrossRefGoogle Scholar
  6. Ashley RJ (1985) Permeability and plastics packaging. In: Comyn J (ed) Polymer permeability. Elsevier Applied Science Publishers, London, New York, pp 269–308.Google Scholar
  7. Baig MN, Tranquillini W (1980) The effects of wind and temperature on cuticular transpiration of Picea abies and Pinus cembra and their significance in dessication damage at the alpine timberline. Oecologia 47: 252–256.CrossRefGoogle Scholar
  8. Baker EA (1982) Chemistry and morphology of plant epicuticular waxes. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London, New York, Toronto, Sidney, San Francisco, pp 139–165.Google Scholar
  9. Barrer RM (1939) Permeation, diffusion and solution of gases in organic polymers. Trans Faraday Soc 35: 628–656.CrossRefGoogle Scholar
  10. Barrer RM (1968) Diffusion and permeation in heterogeneous media. In: Crank J, Park GS (eds) Diffusion in polymers. Academic Press, London, New York, Toronto, Sidney, San Francisco, pp 165–217.Google Scholar
  11. Barrie JA (1968) Water in polmers. In: Crank J, Park GS (eds) Diffusion in polymers. Academic Press, London, New York, Toronto, Sidney, San Francisco, pp 259–314.Google Scholar
  12. Barrie JA, Williams MJL, Munday K (1980) Sorption and diffusion of hydrocarbon vapors in glassy polymers. Polym Eng Sci 20: 20–29.CrossRefGoogle Scholar
  13. Becker M (1987) Permeabilität der pflanzlichen Kutikula: Bestimmung und Analyse der Transportparameter für lipophile organische Verbindungen. Doctoral diss., Technische Universität München.Google Scholar
  14. Becker M, Kerstiens G, Schönherr J (1986) Water permeability of plant cuticles: permeance, diffusion and partition coefficients. Trees 1: 54–60.CrossRefGoogle Scholar
  15. Belousov VN, Mikitaev AK (1983) Gasdurchlässigkeit von Copolymeren. Acta Polym 34: 595–602.CrossRefGoogle Scholar
  16. Bixler HJ, Sweeting OJ (1971) Barrier properties of films. In: Sweeting OJ (ed) The science and technology of polymer films, vol II. Wiley-Interscience, New York, London, Sydney, Toronto, pp 8–130.Google Scholar
  17. Blahnik R (1983) Problems of measuring water sorption in organic coatings and films, and calculations of complicated instances of moistening. Prog Organic Coatings 11: 353–392.CrossRefGoogle Scholar
  18. Blakeman JP, Brodie IDS (1976) Inhibition of pathogens by epiphytic bacteria on aerial plant surfaces. In: Dickinson CH, Price TF (eds) Microbiology of aerial plant surfaces. Academic Press, London, New York, Toronto, Sidney, San Francisco.Google Scholar
  19. Burrows FJ, Milthorep FL (1976) Stomatal conductance in the control of gas exchange. In: Kozlowski TT (ed) Water deficits and plant growth, vol 4, Soil water measurement, plant responses and breeding for drought resistance. Academic Press, London, New York, Toronto, Sidney, San Francisco, pp 103–152.Google Scholar
  20. Cameron AC, Yang SF (1982) A simple method for the determination of resistance to gas diffusion in plant organs. Plant Physiol 70: 21–23.PubMedCrossRefGoogle Scholar
  21. Cape JN, Fowler D (1981) Changes in epicuticular wax of Pinus sylvestris exposed to polluted air. Silva Fennica 15: 457–458.Google Scholar
  22. Cassidy PE, Aminabhavi TM (1983) Water permeation through elastomers and plastics. Rubber Chem 56: 594–618.CrossRefGoogle Scholar
  23. Chabot JF, Chabot BF (1977) Ultrastructure of the epidermis and stomatal complex of balsam fir ( Abies balsamea ). Can J Bot 55: 1064–1075.Google Scholar
  24. Chern RT, Koros WJ, Yui B, Hopfenberg HB, Stannett VT (1984) Selective permeation of CO2 and CH, through Kapton’ polyimide: effects of penetrant competition and gas-phase nonideality. J Polym Sci B 22: 1061–1084.Google Scholar
  25. Clarke JM, Richards RA (1988) The effects of glaucousness, epicuticular wax, leaf age, plant height, and growth environment on water loss rates of excised wheat leaves. Can J Plant Sci 68: 975–982.CrossRefGoogle Scholar
  26. Crafts AS, Foy CL (1962) The chemical and physical nature of plant surfaces in relation to the use of pesticides and their residues. Residue Reviews 1: 112–139.Google Scholar
  27. Crank J (1975) The mathematics of diffusion. Clarendon Press, Oxford.Google Scholar
  28. Cruickshank IAM, Perrin DR, Mandryk M (1977) Fungitoxicity of duvatrienediols associated with the cuticular wax of tobacco leaves. Phytopath Z 90: 243–249.CrossRefGoogle Scholar
  29. Cussler EL (1984) Diffusion. Mass transfer in fluid systems. Cambridge University Press, Cambridge.Google Scholar
  30. Darwin F (1916) On the relation between transpiration and stomatal aperture. Phil Trans R Soc B 207: 413–437.CrossRefGoogle Scholar
  31. Deas AHB, Holloway PJ (1977) The intermolecular structure of some plant cutins. In: Tevini M, Lichtenthaler HK (eds) Lipids and lipid polymers in higher plants. Springer-Verlag, Berlin, Heidelberg, New York, pp 293–299.Google Scholar
  32. Denna DW (1970) Transpiration and the waxy bloom in Brassica oleracea. Aust J Biol Sci 23: 27–31.Google Scholar
  33. Dollard GJ, Atkins DHF, Davies TJ, Healy C (1987) Concentrations and dry deposition velocities of nitric acid. Nature 326: 481–483.CrossRefGoogle Scholar
  34. Dugger WM (1952) The permeability of non-stomate leaf epidermis to carbon dioxide. Plant Physiol 27: 489–499.PubMedCrossRefGoogle Scholar
  35. Eckl K, Gruler H (1980) Phase transitions in plant cuticles. Planta 150: 102–113.CrossRefGoogle Scholar
  36. Esau K (1965) Plant anatomy. John Wiley & Sons, New York, London, Sidney.Google Scholar
  37. Fedors RF (1974) A method for estimating both the solubility parameters and molar volumes of liquids. Polym Eng Sci 14: 147–154, 472.CrossRefGoogle Scholar
  38. Felder RM, Huvard GS (1980) Permeation, diffusion, and sorption of gases and vapors. In: Marton L, Marton C (eds) Methods of experimental physics, vol 16 C, Polymers. Academic Press, New York, London, Toronto, pp 315–377.Google Scholar
  39. Fitter AH, Hay RKM (1987) Environmental physiology of plants, 2nd edn. Academic Press, London, New York, Toronto, Sidney, San Francisco.Google Scholar
  40. Franke W (1967) Mechanisms of foliar penetration of solutions. Ann Rev Plant Physiol 18: 281–300.CrossRefGoogle Scholar
  41. Franz HP, Bartusch W, Heiss R (1972) Untersuchungen über die Wasserdampfdur-chlässigkeit paraffinbeschichteter Papiere. Fette Seifen Anstrichmittel 74: 469–475.CrossRefGoogle Scholar
  42. Fowler D, Cape JN, Unsworth MH (1989) Deposition of atmospheric pollutants on forests. Phil Trans R Soc London B 324: 247–265.CrossRefGoogle Scholar
  43. Garrec JP, Kerfourn C (1989) Effects de pluies acides et de l’ozone sur la perméabilité à l’eau et aux ions de cuticules isolées. Environ Exp Bot 29: 215–228.CrossRefGoogle Scholar
  44. Garrec JP, Plebin R (1986) Perméabilité au fluorure d’hydrogène (HF) des cuticules avec ou sans stomates de feuilles: influence de la présence des stomates et comparaisons avec la perméabilité à l’eau. Environ Exp Bot 26: 299–308.CrossRefGoogle Scholar
  45. Geyer U, Schönherr J (1990) The effect of the environment on the permeability and composition of Citrus leaf cuticles. I. Water permeability of isolated cuticular membranes. Planta 180: 147–153.Google Scholar
  46. Godzik S, Halbwachs G (1986) Structural alterations of Aesculus hippocastanum leaf surface by air pollutants. Z PflKrankh PflSchutz 93: 590–596.Google Scholar
  47. Grennfelt P, Bengtson C, Sharkey L (1983) Dry deposition of nitrogen dioxide to Scots pine needles. In: Pruppacher HR, Semonin RG, Slinn WGN (eds) Precipitation scavenging, dry deposition and resuspension. Elsevier, Amsterdam, pp 753–762.Google Scholar
  48. Grill D (1973) Rasterelektronenmikroskopische Untersuchungen an S02-belasteten Fichtennadeln. Phytopath Z 78: 75–80.CrossRefGoogle Scholar
  49. Gullvag BM, Oestensen H (1986) Wax layer erosion in spruce needles—an indicator of air-borne pollution. J Ultrastrct Res 94: 280–282.Google Scholar
  50. Haas K (1974) Untersuchungen zum chemischen Aufbau der Cuticula während der Organogenese von Blättern und Früchten sowie zur Cuticulartranspiration. Doctoral diss., Universität Hohenheim.Google Scholar
  51. Haas K, Schönherr J (1979) Composition of soluble cuticular lipids and water permeability of cuticular membranes from Citrus leaves. Planta 146: 399–403.CrossRefGoogle Scholar
  52. Hadley NF (1989) Lipid water barriers in biological systems. Prog Lipid Res 28: 1–33.PubMedCrossRefGoogle Scholar
  53. Hall DM, Jones RL (1961) Physiological significance of surface wax on leaves. Nature 191: 95–96.CrossRefGoogle Scholar
  54. Hanover JW, Reicosky DA (1971) Surface wax deposits on foliage of Picea pungens and other conifers. Am J Bot 58: 681–687.CrossRefGoogle Scholar
  55. Hartley GS, Graham-Bryce IJ (1980) Physical principles of pesticide behaviour. Academic Press, London, New York.Google Scholar
  56. Hildebrand JH, Scott RL (1950) The Solubility of Nonelectrolytes. 3rd Edn, Reinhold, New York.Google Scholar
  57. Hoch HC (1979) Penetration of chemicals into the Malus leaf cuticle. An ultra-structural analysis. Planta 147: 186–195.CrossRefGoogle Scholar
  58. Holloway PJ (1982a) Structure and histochemistry of plant cuticular membranes: an overview. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London, pp 1–32.Google Scholar
  59. Holloway PJ (1982b) The chemical constitution of plant cutins. In: Cutler DF, Alvin KL, Price CE (eds) The plant cuticle. Academic Press, London, pp 45–85.Google Scholar
  60. Holmgren P, Jarvis PG, Jarvis MS (1965) Resistances to carbon dioxide and water vapour transfer in leaves of different plant species. Physiol Plant 18: 557–573.CrossRefGoogle Scholar
  61. Hopfenberg HB, Paul DR (1978) Transport phenomena in polymer blends. In: Paul DR, Newman S (eds) Polymer blends, vol I. Academic Press, New York, pp 445–489.Google Scholar
  62. Hopfinger AJ, Koehler MG, Pearlstein RA, Tripathy SK (1988) Molecular modeling of polymers. IV. Estimation of glass transition temperatures. J Polym Sci B 26: 2007–2028.CrossRefGoogle Scholar
  63. Huebert BJ, Robert CH (1985) The dry deposition of nitric acid to grass. J Geophys Res 90 (D1): 2085–2090.CrossRefGoogle Scholar
  64. Huttunen S, Laine K (1983) Effects of air-borne pollutants on the surface wax structure of Pinus sylvestris needles. Ann Bot Fennici 20: 79–86.Google Scholar
  65. Jefferson PG, Johnson DA, Asay KH (1989) Epicuticular wax production, water status and leaf temperature in triticeae range grasses of contrasting visible glaucousness. Can J Plant Sci 69: 513–519.CrossRefGoogle Scholar
  66. Jeffree CE, Johnson RPC, Jarvis PG (1971) Epicuticular wax in the stomatal antechambers of Sitka spruce and its effects on the diffusion of water vapour and carbon dioxide. Planta 98: 1–10.CrossRefGoogle Scholar
  67. Jeffree CE, Read ND, Smith JAC, Dale JE (1987) Water droplets and ice deposits in leaf intercellular space: redistribution of water during cryofixation for scanning electron microscopy. Planta 172: 20–37.CrossRefGoogle Scholar
  68. Johansson C (1987) Pine forest: a negligible sink for atmospheric NOx in rural Sweden. Tellus 39B: 426–438.Google Scholar
  69. Jolley JE, Hildebrand JH (1958) Solubility, entropy and partial molar volumes in solutions of gases in non-polar solvents. J Am Chem Soc 80: 1050–1054.CrossRefGoogle Scholar
  70. Jordan WR, Shouse PJ, Blum A, Miller FR, Monk RL (1984) Environmental physiology of sorghum. II. Epicuticular wax load and cuticular transpiration. Crop Sci 24: 1168–1173.CrossRefGoogle Scholar
  71. Kamp H (1930) Untersuchungen über Kutikularbau und kutikuläre Transpiration von Blättern. Jb wiss Bot 72: 403–465.Google Scholar
  72. Kenk G, Evers F, Unfried P, Schröter H (1983) Düngung als Therapie gegen Immissionswirkungen in Tannen-Fichten-Beständen? AFZ 154: 153–170.Google Scholar
  73. Kerler F, Schönherr J (1988) Permeation of lipophilic chemicals across plant cuticles: Prediction from partition coefficients and molar volumes. Arch Environ Contam Toxicol 17: 7–12.CrossRefGoogle Scholar
  74. Kerstiens (1988) Funktionelle Veränderungen der pflanzlichen Kutikula durch Ozon. Doctoral diss., Technische Universität München.Google Scholar
  75. Kerstiens G, Lendzian KJ (1989a) Interactions between ozone and plant cuticles. I. Ozone deposition and permeability. New Phytol 112: 13–19.CrossRefGoogle Scholar
  76. Kerstiens G, Lendzian KJ (1989b) Interactions between ozone and plant cuticles. II. Water permeability. New Phytol 112: 21–27.CrossRefGoogle Scholar
  77. Kidston R, Lang WH (1920) On old red sandstone plants: Rhynia. Trans R Soc Edinburgh 52: 603–627.Google Scholar
  78. Kolattukudy PE (1986) Enzymatic penetration of the plant cuticle by fungal pathogens. Ann Rev Phytopath 23: 223–250.CrossRefGoogle Scholar
  79. Laisk A, Pfanz H, Schramm MJ, Heber U (1988) Sulfur dioxide fluxes into different cellular compartments of leaves photosynthesizing in a polluted atmosphere. I.: Computer analysis. Planta 173: 230–240.Google Scholar
  80. Lampard JF, Carter GA (1973) Chemical investigations on resistance of coffee berry disease in Coffea arabica. An antifungal compound in coffee cuticular wax. Ann Appl Biol 73: 31–37.CrossRefGoogle Scholar
  81. Larcher (1980) Physiological plant ecology, revised edition. Springer-Verlag, New York.Google Scholar
  82. Larsson S, Svenningsson M (1986) Cuticular transpiration and epicuticular lipids of primary leaves of barley (Hordeum vulgare). Physiol Plant 68: 13–19.CrossRefGoogle Scholar
  83. Lee WA, Rutherford RA (1975) The glass transition temperatures of polymers. In: Brandrup J, Immergut EH (eds) Polymer handbook, 2nd edn. Wiley-Interscience, New York, London, Sydney, Toronto.Google Scholar
  84. Lendzian KJ (1982) Gas permeability of plant cuticles: oxygen permeability. Planta 155: 310–315.CrossRefGoogle Scholar
  85. Lendzian KJ (1984) Permeability of plant cuticles to gaseous air pollutants. In: Koziol MJ, Whatley FR (eds) Gaseous air pollutants and plant metabolism. Butterworths, London, pp 77–81.Google Scholar
  86. Lendzian KJ (1987) Aufnahme and zellphysiologische Wirkungen von Luftschadstoffen. Naturwissenschaften 74: 282–288.CrossRefGoogle Scholar
  87. Lendzian KJ, Kahlert J (1988) Interactions between nitrogen dioxide and plant cuticles: binding to cuticular structures. Plant Physiol (Life Sci Adv) 7: 197–207.Google Scholar
  88. Lendzian KJ, Kerstiens G (1988) Interactions between plant cuticles and gaseous air pollutants. In: The Association of Applied Biologists (ed) Aspects of applied biology 17, part 2 Environmental aspects of applied biology, Wellesbourne, UK, pp 97–104.Google Scholar
  89. Lendzian KJ, Nakajima A, Ziegler H (1986) Isolation of cuticular membranes from various conifer needles. Trees 1: 47–53.CrossRefGoogle Scholar
  90. Lendzian KJ, Schönherr J (1983) In-vivo study of cutin synthesis in leaves of Clivia miniata Reg. Planta 158: 70–75.CrossRefGoogle Scholar
  91. Lendzian KJ, Unsworth MH (1983) Ecophysiological effects of atmospheric pollutants. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological plant ecology, vol 4, Encyclopedia of plant physiology, vol 12D, Springer-Verlag, Berlin, Heidelber, New York, pp 465–502.Google Scholar
  92. Levine H, Slade L (1988) Water as a plasticizer: physico-chemical aspects of low-moisture polymeric systems. In: Franks F (ed) Water science reviews, vol 3, Water dynamics, Cambridge University Press, Cambridge, New York, New Rochelle, Melbourne, Sydney, pp 79–185.CrossRefGoogle Scholar
  93. Lindberg SE, Lovett GM, Richter DD, Johnson DW (1986) Atmospheric deposition and canopy interactions of major ions in a forest. Science 231: 141–145.PubMedCrossRefGoogle Scholar
  94. Marshall JD, Cadle SH (1989) Evidence for trans-cuticular uptake of HNO3 vapor by foliage of eastern white pine (Pinus strobus L.). Environ Pollut 60: 15–28.PubMedCrossRefGoogle Scholar
  95. Martin JT, Juniper BE (1970) The cuticle of plants. Arnolds, London.Google Scholar
  96. Mauze GR, Stern SA (1982) The solution and transport of water vapor in poly-(acrylonitrile): a re-examination. J Member Sci 12: 51–64.CrossRefGoogle Scholar
  97. Meidner H (1986) Cuticular conductance and the humidity response of stomata. J Exp Bot 37: 517–525.CrossRefGoogle Scholar
  98. Meyer JA, Rogers, C, Stannett V, Szwarc M (1957) Studies in the gas and vapor permeability of plastic films and coated papers. Part III. The permeation of mixed gases and vapors. TAPPI 40: 142–146.Google Scholar
  99. Miller RH (1985) The prevalence of pores and canals in leaf cuticular membranes. Ann Bot 55: 459–471.Google Scholar
  100. Miller RH (1986) The prevalence of pores and canals in leaf cuticular membranes. 2. Supplemental studies. Ann Bot 57: 419–434.Google Scholar
  101. Nakamura Y, Jett CA Jr., Negishi M, Doi K, Kageyama E, Kudo K (1970) Rheological properties of elastomers based on cellulose fibers. J Appl Polym Sci 14: 929–951.CrossRefGoogle Scholar
  102. Nip M, Tegelaar, EW, de Leeuw JW, Schenck PA (1986) A new nonsaponifiable highly aliphatic and resistant biopolymer in plant cuticles. Naturwissenschaften 73: 579–585.CrossRefGoogle Scholar
  103. Nip M, de Leeuw JW, Holloway PJ, Jensen JPT, Sprenkels JCM, de Pooter M, Sleeckx JJM (1987) Comparison of flash pyrolysis, differential scanning calorimetry, “C NMR and IR spectroscopy in the analysis of a highly aliphatic biopolymer from plant cuticles. J Anal Appl Pyrolysis 11: 287–295.CrossRefGoogle Scholar
  104. Nobel PS (1983) Biophysical plant physiology and ecology. Freeman, New York.Google Scholar
  105. Paul DR, Koros WJ (1976) Effect of partially immobilizing sorption on permeability and the diffusion time lag. J Polym Sci B 14: 675–685.Google Scholar
  106. Petropoulos JH (1985) Membranes with non-homogeneous sorption and transport properties. In: Gordon M (ed) Adv Polym Sci 64, Polymer membranes. Springer-Verlag, Berlin, Heidelberg, New York, pp 93–142.Google Scholar
  107. Pisek A, Berger E (1938) Kutikuläre Transpiration und Trockenresistenz isolierter Blätter und Sprosse. Planta 28: 124–155.CrossRefGoogle Scholar
  108. Pitcairn CER, Jeffree CE, Grace J (1986) Influence of polishing and abrasion on the diffusive conductance of leaf surface of Festuca arundinacea Schreb. Plant Cell Environ 9: 191–196.Google Scholar
  109. Rennenberg H (1984) The fate of excess sulfur in higher plants. Ann Rev Plant Physiol 35: 121–153.CrossRefGoogle Scholar
  110. Riederer M (1989) The cuticle of conifers: structure, composition and transport properties. In: Schulze ED, Lange OL, Oren R (eds) Ecological Studies vol 77. Springer-Verlag, Berlin, Heidelberg, pp 157–192.Google Scholar
  111. Riederer M, Schneider G (1989) Comparative study of the composition of waxes extracted from isolated leaf cuticles and from whole leaves of Citrus: Evidence for selective extraction. Physiol Plant 77: 373–384.CrossRefGoogle Scholar
  112. Riederer M, Schneider G (1990) The effect of the environment on the permeability and composition of Citrus leaf cuticles. II. Composition of soluble cuticular lipids and correlation with transport properties. Planta 180: 154–165.CrossRefGoogle Scholar
  113. Riederer M, Schönherr J (1984) Accuumulation and transport of (2,4dichlorophenoxy)acetic acid in plant cuticles: I. Sorption in the cuticular membrane and its components. Ecotoxicol Environ Saf 8:236–247Google Scholar
  114. Riederer M, Schönherr J (1986) Thermodynamic analysis of nonelectrolyte sorption in plant cuticles: The effects of concentration and temperature on sorption of 4-nitrophenol. Planta 169: 69–80.CrossRefGoogle Scholar
  115. Riederer M, Schönherr J (1988) Development of plant cuticles: fine structure and cutin composition of Clivia miniata Reg. leaves. Planta 174: 127–138.CrossRefGoogle Scholar
  116. Rogers CE (1985) Permeation of gases and vapours in polymers. In: Comyn J (ed) Polymer permeability. Elsevier Applied Science Publishers, London, New York, pp 11–74.Google Scholar
  117. Rogers CE, Stannett V, Szwarc M (1957) Permeability valves. Ind Eng Chem 49: 1933–1936.CrossRefGoogle Scholar
  118. Saxe H (1986) Stomatal-dependent and stomatal-independent uptake of NOx. New Phytol 103: 199–205.CrossRefGoogle Scholar
  119. Scherer JR, Bolton BA (1985) Water in polymer membranes. 5. On the existence of pores and voids. J Phys Chem 89: 3535–3540.CrossRefGoogle Scholar
  120. Schieferstein RH, Loomis WE (1959) Development of the cuticular layers in angiosperm leaves. Am J Bot 46: 625–635.CrossRefGoogle Scholar
  121. Schmidt HW, Mérida T, Schönherr J (1981) Water permeability and fine structure of cuticular membranes isolated enzymatically from leaves of Clivia miniata Reg. Z Pflanzenphysiol 105: 41–51.Google Scholar
  122. Schönherr J (1976a) Water permeability of isolated cuticular membranes: The effect of pH and cations on diffusion, hydrodynamic permeability and size of polar pores in the cutin matrix. Planta 128: 113–126.CrossRefGoogle Scholar
  123. Schönherr J (1976b) Water permeability of isolated cuticular membranes: The effect of cuticular waxes on diffusion of water. Planta 131: 159–164.CrossRefGoogle Scholar
  124. Schönherr J (1982) Resistance of plant surfaces to water loss: transport properties of cutin, suberin and associated lipids. In: Lange OL, Nobel PS, Osmond CB (eds) Physiological plant ecology, vol 2, Encyclopedia of plant physiology, vol 12B, Springer Verlag, Berlin, Heidelberg, New York, pp 153–179.Google Scholar
  125. Schönherr J, Bukovac MJ (1978) Foliar penetration of succinic acid-2,2-dimethylhydrazide: Mechanisms and rate limiting step. Physiol Plant 42: 243–251.CrossRefGoogle Scholar
  126. Schönherr J, Huber R (1977) Plant cuticles are polyelectrolytes with isoelectric points around three. Plant Physiol 59: 145–150.PubMedCrossRefGoogle Scholar
  127. Schönherr J, Lendzian KJ (1981) A simple and inexpensive method of measuring water permeability of isolated plant cuticular membranes. Z Pflanzenphysiol 102: 321–327.Google Scholar
  128. Schönherr J, Mérida T (1981) Water permeability of plant cuticular membranes: the effects of humidity and temperature on the permeability of non-isolated cuticles of onion bulb scales. Plant Cell Environ 4: 349–354.CrossRefGoogle Scholar
  129. Schönherr J, Riederer M (1986) Plant cuticles sorb lipophilic compounds during enzymatic isolation. Plant Cell Environ 9: 459–466.CrossRefGoogle Scholar
  130. Schönherr J, Riederer M (1989) Foliar penetration and accumulation of organic chemicals in plant cuticles. Rev Environ Contam Toxicol 108: 1–70.Google Scholar
  131. Schönherr J, Schmidt W (1979) Water permeability of plant cuticles. Dependence of permeability coefficients of cuticular transpiration on vapor pressure saturation deficit. Planta 144: 391–400.CrossRefGoogle Scholar
  132. Schönherr J, Ziegler H (1975) Hydrophobic cuticular ledges prevent water entering the air pores of liverwort of liverwort thalli. Planta 124: 51–60.CrossRefGoogle Scholar
  133. Schreiber L, Schönherr J (1990) Phase transitions and thermal expansion coefficients of plant cuticles. The effect of temperature on structure and function. Planta 182: 186–193.CrossRefGoogle Scholar
  134. Schroeter LC (1966) Sulfur dioxide. Applications in foods, beverges, and pharmaceuticals. Pergamon, Oxford.Google Scholar
  135. Schulze ED, Lange OL, Oren R (1989) Forest decline and acid rain Ecological Studies, vol 77. Springer Verlag, Heidelberg, New York.Google Scholar
  136. Scott FM (1950) Internal suberization of plant tissues. Bot Gaz 111: 378–394.CrossRefGoogle Scholar
  137. Sitte P, Rennier R (1963) Untersuchungen an cuticularen Zellwandschichten. Planta 60: 19–40.CrossRefGoogle Scholar
  138. Sowell JB, Koutnik DL, Lansing AJ (1982) Cuticular transpiration of whitebark pine (Pinus albicaulis) within a sierra nevada timberline ecotone, U.S.A. Arctic Alpine Res 14: 97–103.CrossRefGoogle Scholar
  139. Spedding DJ (1969) Uptake of sulphur dioxide by barley leaves at low sulphur dioxide concentrations. Nature 224: 1229–1230.PubMedCrossRefGoogle Scholar
  140. Spedding DJ, Ziegler I, Hampp R, Ziegler H (1980) Effect of pH on the uptake of 35S-sulfur from sulfate, sulfite, and sulfide by isolated spinach chloroplasts. Z Pflanzenphysiol 96: 351–364.Google Scholar
  141. Stahl K (1990) Untersuchungen zum Austausch niedermolekularer organischer Verbindungen zwischen Atmosphäre und Pflanze. Doctoral diss., Technische Universität München.Google Scholar
  142. Stannett V (1968) Simple gases. In: Crank J, Park GS (eds) Diffusion in polymers. Academic Press, London, New York, Toronto, Sidney, San Francisco, pp 41–74.Google Scholar
  143. Stannett VT (1985) The permeability of plastic films and coated papers to gases and vapors. TAPPI J 68: 22–26.Google Scholar
  144. Stein WD (1981) Permeability of lipophilic molecules. In: Bonting SL, de Pont JJ (eds) Membrane transport. Elsevier/North Holland Biomedical Press, Amsterdam, pp 1–28.Google Scholar
  145. Tamm CO, Cowling EB (1977) Acidic precipitation and forest vegetation. Water Air Soil Pollut 7: 503–511.Google Scholar
  146. Tegelaar EW, de Leeuw JW, Largeau C, Derenne S, Schulten HR, Müller R, Boon JJ, Nip M, Sprenkels JCM (1989) Scope and limitations of several pyrolysis methods in the structural elucidation of a macromolecular plant constituent in the leaf cuticle of Agave americana L. J Anal Appl Pyrolysis 15: 29–54.CrossRefGoogle Scholar
  147. Thomas MD (1965) Photosynthesis: environmental and metabolic relationship. In: Steward FC (ed) Plant physiology, vol 4A. Academic Press, London, New York, pp 9–202.Google Scholar
  148. Tukey HB (1970) The leaching of substances from plants. Ann Rev Plant Physiol 21: 305–324.CrossRefGoogle Scholar
  149. Unsworth MH, Wilshaw JC (1989) Wet, occult and dry deposition of pollutants on forests. Agric For Meteorol 47: 221–238.CrossRefGoogle Scholar
  150. Urquhart AR, Williams AM (1924) J Textile Inst 15: T559.CrossRefGoogle Scholar
  151. Ott E, Spurlin HM, Graff in MW (ed) Cellulose and cellulose derivatives, 2nd edition, part I (1954). Interscience Publihsers, New York.Google Scholar
  152. Ursprung A (1925) Über das Eindringen von Wasser und anderen Flüssigkeiten in Interzellularen. Beih Bot Zentralbl 41: 15–40.Google Scholar
  153. van Krevelen DW (1976) Properties of polymers, 2nd edition. Elsevier Scientific Publishing Co, Amsterdam, Oxford, New York.Google Scholar
  154. Walles B, Nyman B, Aldén T (1973) On the ultrastructure of needles of Pinus sylvestres L.. Stud Forest Suecica 106: 1–26.Google Scholar
  155. Wattendorf J, Holloway PJ (1980) Studies on the ultrastructure and histochemistry of plant cuticles: the cuticular membrane of Agave americana L. in situ. Ann Bot 46: 13–28.Google Scholar
  156. Weigel HJ, Halbwachs G, Jäger HJ (1989) The effects of air pollutants on forest trees from a plant physiological view. Z PflKrankh PtlSchutz 96: 203–217.Google Scholar
  157. West DW, Gaff DF (1976) The effect of leaf water potential, leaf temperature and light intensity on leaf diffusion resistance and the transpiration of leaves of Malus sylvestris. Physiol Plant 38: 98–104.CrossRefGoogle Scholar
  158. Whitecross MI, Mercer FV (1972) Permeability of isolated Eucalyptus gummifera cuticle towards alcohols and amides. Aust J Bot 20: 1–7.CrossRefGoogle Scholar
  159. Winner WE, Mooney HA, Goldstein RA (1985) Sulfur dioxide and vegetation. University Press, Stanford.Google Scholar
  160. Woodhead S, Chapman RF (1986) Insect behaviour and the chemistry of plant surface waxes. In: Juniper B, Southwood R (eds) Insects and the plant cuticle. Edward Arnold, London.Google Scholar
  161. Zech W, Suttner T, Popp E (1985) Elemental analysis and physiological responses of forest trees in SO2-polluted areas of NE-Bavaria. Water Air Soil Poll 21: 175–183.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Klaus J. Lendzian
    • 1
  • Gerhard Kerstiens
    • 1
  1. 1.Lehrstuhl für BotanikTechnische Universität MünchenMünchen 2Germany

Personalised recommendations