Advertisement

Scanning Transmission Electron Microscopy (STEM) Studies of Molluscan Hemocyanins

  • Mary G. Hamilton
  • Theodore T. Herskovits
  • Joseph S. Wall
Conference paper

Abstract

In the past four years we have studied some 20 molluscan Hcs of the Polyplacaphoran, Gastropodan and Bivalvian classes by STEM and other physical methods (1-6). With STEM we have been able to measure the masses of individual particles in unstained, freeze-dried specimens, and to examine the arrangement of the cylindrical decameric units within various aggregates. Although the most intensively studied Hcs (e.g.,Helix pomatia) are didecameric, many of the gastropodan Hcs that we have studied are multi-decameric assemblies. The appearance of the di-decameric Hc may be represented schematically as a closed box composed of two decameric units facing one another, [x], where x is used to identify such units in the longer assemblies. In the bracket notation of Van Holde and Miller (7) for the decamer, ], the closed end represents the collar end formed by the folding over of two of the eight functional units of each of the ten monomeric chains (8). The model for a di decameric Hc is based primarily on Mellema and King’s image analyses (9) of negatively-stained transmission electron microscopic (TEM) images of the isoionic (pi) polymers of Kelletia kelletia Hc that look like stacks of closed boxes: [x][x][x]. We have found that the isoionic type of regular stacking is not seen in multi-decameric Hcs. Rather, as others have also noted (10,11), there is a polarity in the arrangement of the decameric units: usually only one “Mellema- Klug” di-decamer is present with decamers added in both directions, and with collar ends never facing one another.

Keywords

Scan Transmission Electron Microscopy Helix Pomatia Scan Transmission Electron Microscopy Image Bracket Notation Scan Transmission Electron Microscopy Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hamilton, M.G., Herskovits, T.T., Furcinitti, P.S. and Wall, J.S. (1989) J. Ultrastruct. Mol. Struct. Res. 102: 221–228.PubMedCrossRefGoogle Scholar
  2. 2.
    Herskovits, T.T., Blake, P.A., Gonzalez, J.A., Hamilton, M.G. and Wall, J.S. (1989) Comp. Biochem. Physiol. 94B: 415–421.Google Scholar
  3. 3.
    Herskovits, T.T., Rodriquez, R.R. and Hamilton, M.G. (1990) Comp. Biochem. Physiol. 97B: 631–636.Google Scholar
  4. 4.
    Herskovits, T.T., Gonzalez, J.A. and Hamilton, M.G. (1991) Comp. Biochem. Physiol. 98B.Google Scholar
  5. 5.
    Herskovits, T.T., Otero, R.M. and Hamilton, M.G. (1990) Comp. Biochem. Physiol. 97B: 623–629.Google Scholar
  6. 6.
    Herskovits, T.T., Hamilton, M.G., Cousins, C.J. and Wall, J.S. (1990) Comp. Biochem. Physiol. 96B: 497–503.Google Scholar
  7. 7.
    Van Holde, K.E. and Miller, KI. (1982) Q. Rev. Biophys. 15: 1–129.PubMedCrossRefGoogle Scholar
  8. 8.
    Van Bruggen, E.F.J., Wiebenga, E.H. and Gruber, M. (1962) J. Mol. Biol. 4: 1–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Mellema, J.E. and Klug, A. (1972)Nature 239: 146–150.PubMedCrossRefGoogle Scholar
  10. 10.
    Ghiretti-Magaldi, A., Salvato, B., Tognon, G., Mammi, M. and Zanotti, G. (1981) In Invertebrate Oxygen Binding Proteins: Structure, Active Site, and Function, eds. J. Lamy and J. Lamy, J, 393–404. New York: Marcel Dekker.Google Scholar
  11. 11.
    Terwilliger, N.B., Terwilliger, R.C., Meyhofer, E. and Morse, M.P. (1988) Comp. Biochem. Physiol. 89B: 189–195.Google Scholar
  12. 12.
    Wichertjes, T., Gielens, C., Schutter, W.G., Preaux, G., Lontie, R. and Van Bruggen, E.F.J. (1986) Biochim. Biophys. Acta 872: 183–194.CrossRefGoogle Scholar
  13. 13.
    Herskovits, T.T., Blake, P.A. and Hamilton, M.G. (1988) Comp. Biochem. Physiol. 90B: 869–874.Google Scholar
  14. 14.
    Makino, N. (1971) J. Biochem. 70: 149–155.PubMedGoogle Scholar
  15. 15.
    Senozan, N.M., Landrum, J., Bonaventura, J. and Bonaventura, C. (1981) In Invertebrate Oxygen Binding Proteins: Structure, Active Site, and Function, eds. J. Lamy and J. Lamy, 703–717. New York: Marcel Dekker.Google Scholar
  16. 16.
    Siezen, R.J. and Van Bruggen, E.F.J. (1974) J. Mol. Biol. 90: 77–89.PubMedCrossRefGoogle Scholar
  17. 17.
    Hamilton, M.G., Herskovits, T.T. and Wall, J.S. (1990) Proc. Xllth Int. Congr. for Electron Microscopy, 810-811.Google Scholar
  18. 18.
    Herskovits, T.T. (1988) Comp. Biochem. Physiol. 91B: 597–611.Google Scholar
  19. 19.
    Condie, R.M. and Langer, R.B. (1964) Science 144: 1138–1140.PubMedCrossRefGoogle Scholar
  20. 20.
    Van Breemen, J.F.L., Wichertjes, T., Mtiller, M.F.J., Van Driel, R. and Van Bruggen, E.F.J. (1975) Eur. J. Biochem. 60: 129–135.PubMedCrossRefGoogle Scholar
  21. 21.
    Wall, J.S. and Hainfeld, J.F. (1986) Annu. Rev. Biophys. Biophys. Chem. 15: 355–376.PubMedCrossRefGoogle Scholar
  22. 22.
    Hamilton, M.G., Rodriguez, R.R., Herskovits, T.T. and Wall, J.S. (1989) In Proc. 47th Ann. Mtg. Electron Microscopy Society of America, ed. G.W. Bailey, 248–249. San Francisco: San Francisco Press.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Mary G. Hamilton
    • 1
  • Theodore T. Herskovits
    • 2
  • Joseph S. Wall
    • 3
  1. 1.Division of Science and MathematicsFordham UniversityNew YorkUSA
  2. 2.Department of ChemistryFordham UniversityBronxUSA
  3. 3.Biology DepartmentBrookhaven National LaboratoryUptonUSA

Personalised recommendations