Skip to main content

Mammary Growth Regulation by Transforming Growth Factor β

  • Conference paper
Growth Factors in Reproduction

Part of the book series: Serono Symposia, USA ((SERONOSYMP))

  • 43 Accesses

Abstract

A considerable literature has developed around the problem of regulation of mammary development. The great majority of this work has concerned the identification of systemic mammogens, notably the ovarian steroids, pituitary peptides, adrenal corticoids, and placental factors (1). The distinguishing feature of these hormones is that they all drive mammary development towards growth or functional differentiation; that is, they act as positive regulators. The existence of these hormones has been, by and large, demonstrated in vivo by endocrine ablation surgery followed by replacement therapy, in which removal of endocrine secretion interrupted the normal development or function of the organ. Because these experiments were conducted in a physiological setting, their biological significance was never in doubt. The present situation is that the naturally occurring mammogens have been identified and described in considerable detail and, when more recent biochemical and molecular approaches are factored in, it can be said that we are developing a usable outline of the hormones driving mammary growth and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Topper YJ, Freeman CS. Multiple hormone interactions in the developmental biology of the mammary gland. Physiol Rev 1980; 60:1049–1106.

    PubMed  CAS  Google Scholar 

  2. Faulkin LJ Jr, DeOme KB. Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. J Natl Cancer 1960; 24:953–969.

    Google Scholar 

  3. DeOme KB, Faulkin LJ Jr, Bern HA. Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Res 1959; 19:515–520.

    PubMed  CAS  Google Scholar 

  4. Daniel CW. Finite growth span of mouse mammary gland serially propagated in vivo. Experientia 1973; 29:1422–1424.

    Article  PubMed  CAS  Google Scholar 

  5. Daniel CW, Silberstein GB. Postnatal development of the rodent mammary gland. In: Neville MC, Daniel CW, eds. The mammary gland: development, regulation, and function. New York: Plenum Press, 1987.

    Google Scholar 

  6. Pitelka DR, Hamamoto ST. Form and function in mammary epithelium: the interpretation of ultrastructure. J Dairy Sci 1977; 60:643–654.

    Article  PubMed  CAS  Google Scholar 

  7. Williams JM, Daniel CW. Mammary ductal elongation: differentiation of myoepithelium during branching morphogenesis. Dev Biol 1983; 97:274–290.

    Article  PubMed  CAS  Google Scholar 

  8. Daniel CW, Silberstein GB, Strickland P. Direct action of 17 beta-estradiol on mouse mammary ducts analyzed by sustained release implants and steroid autoradiography. Cancer Res 1987; 47:6052–6057.

    PubMed  CAS  Google Scholar 

  9. Coleman S, Silberstein GB, Daniel CW. Ductal morphogenesis in the mouse mammary gland: evidence supporting a role for epidermal growth factor. Dev Biol 1988; 127:304–315.

    Article  PubMed  CAS  Google Scholar 

  10. Daniel CW, Silberstein GB, Van Horn K, Strickland P, Robinson S. TGF-beta-1-induced inhibition of mouse mammary ductal growth: Developmental specificity and characterization. Dev Biol 1989; 135:20–30.

    Article  PubMed  CAS  Google Scholar 

  11. Silberstein GB, Daniel CW. Investigation of mouse mammary ductal growth regulation using slow-release plastic implants. J Dairy Sci 1987;70:1981–1990.

    Article  PubMed  CAS  Google Scholar 

  12. Daniel CW, Silberstein GB. Local effects of growth factors. In: Lippman ME, Dickson RB, eds. Breast cancer: cellular and molecular biology. Boston: Kluwer Academic, 1989.

    Google Scholar 

  13. Roberts AB, Sporn MB. The transforming growth factor-betas. In: Sporn MB, Roberts AB, eds. Peptide growth factors and their receptors. Heidelberg: Springer-Verlag, 1989.

    Google Scholar 

  14. Silberstein GB, Daniel CW. Elvax 40P implants: sustained, local release of bioactive molecules influencing mammary ductal development. Dev Biol 1982; 93:272–278.

    Article  PubMed  CAS  Google Scholar 

  15. Silberstein GB, Strickland P, Trumpbour V, Coleman S, Daniel CW. In vivo, cAMP stimulates growth and morphogenesis of mouse mammary ducts. Proc Natl Acad Sci USA 1984; 81:4950–4954.

    Article  PubMed  CAS  Google Scholar 

  16. Vonderhaar BK. Local effects of EGF, TGF, and EGF-like growth factors on lobuloalveolar development of the mouse mammary gland in vivo. J Cell Phys 1987; 132:581–584.

    Article  CAS  Google Scholar 

  17. Silberstein GB, Daniel CW. Reversible inhibition of mammary gland growth by transforming growth factor-beta. Science 1987; 237:291–293.

    Article  PubMed  CAS  Google Scholar 

  18. Coleman S, Daniel CW. Inhibition of mouse mammary ductal morphogenesis and down regulation of the EGF receptor by epidermal growth factor. Dev Biol 1990; 137:425–433.

    Article  PubMed  CAS  Google Scholar 

  19. Roberts AB, Anzano MA, Wakefield LM, Roche NS, Stern DF, Sporn MB. Type beta transforming growth factor: A bifunctional regulator of cellular growth. Proc Natl Acad Sci USA 1985; 82:119–123.

    Article  PubMed  CAS  Google Scholar 

  20. Heine UI, Munoz EF, Flanders KC, et al. Role of transforming growth factor beta in the development of the mouse embryo. J Cell Biol 1987; 105:2861–2876.

    Article  PubMed  CAS  Google Scholar 

  21. Akhurst RJ, Fee F, Balmain A. Localized production of TGF-beta mRNA in tumor promoter-stimulated mouse epidermis. Nature 1988; 331:363–365.

    Article  PubMed  CAS  Google Scholar 

  22. Fava RA, McClure DB. Fibronectin-associated transforming growth factor. J Cell Phys 1987; 131:184–189.

    Article  CAS  Google Scholar 

  23. Rizzino A. Transforming growth factor beta: multiple effects on cell differentiation and extracellular matrices. Dev Biol 1988; 130:411–422.

    Article  PubMed  CAS  Google Scholar 

  24. Silberstein GB, Daniel CW. Glycosaminoglycans in the basal lamina and the extracellular matrix of serially aged mouse mammary ducts. Mech Age Dev 1984; 24: 151–162.

    Article  CAS  Google Scholar 

  25. Silberstein GB, Daniel CW. Glycosaminoglycans in the basal lamina and extracellular matrix of the developing mouse mammary duct. Dev Biol 1982; 90:215–222.

    Article  PubMed  CAS  Google Scholar 

  26. Silberstein GB, Daniel CW, Coleman S, Strickland P. Epithelium-dependent induction of mouse mammary gland extracellular matrix by TGF-beta-1. J Cell Biol (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Daniel, C.W., Silberstein, G.B. (1991). Mammary Growth Regulation by Transforming Growth Factor β. In: Schomberg, D.W. (eds) Growth Factors in Reproduction. Serono Symposia, USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3162-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3162-2_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7819-1

  • Online ISBN: 978-1-4612-3162-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics