Skip to main content

Growth Factors Affecting Normal and Malignant Prostatic Cells

  • Conference paper
Growth Factors in Reproduction

Part of the book series: Serono Symposia, USA ((SERONOSYMP))

Abstract

The growth of any tissue, whether normal or malignant, depends upon the quantitative relationship between the rate of cell proliferation and cell death. In normal adult tissues, these rates are balanced such that a steady state (i.e., self-renewing) relationship is maintained in which the size of the normal tissue does not increase continuously with time. Studies in a variety of different tissues have demonstrated that this steady state balance is regulated by a series of both systemic and local growth factors. A fundamental characteristic of cancer is that unlike their normal counterparts, their rate of cell proliferation exceeds their rate of cell death, thus resulting in continuous net growth of the cancer. This does not mean, however, that cancer cells are unresponsive and therefore autonomous to such growth factors. On the contrary, many types of cancer cells respond to normal growth factors and often in a manner very similar to that of the normal cell of origin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wilson JD, Gloyna RE. The intracellular metabolism of testosterone in the accessory organs of reproduction. Recent Prog Horm Res 1970; 26:309–336.

    PubMed  CAS  Google Scholar 

  2. Siiteri PK, Wilson JD. Dihydrotestosterone in prostatic hyperthrophy, 1. The formation and content of dihydrotestosterone in the hypertropic prostate of man. J Clin Invest 1970; 49:1737–1745.

    Article  PubMed  CAS  Google Scholar 

  3. Bruchovsky N. Comparison of the metabolites found in rat prostate following the in vivo administration of seven natural androgens. Endocrinology 1971; 89:1212–1218.

    Article  PubMed  CAS  Google Scholar 

  4. Liao S, Fang S. Receptor-proteins for androgens and the mode of action of androgens on gene transcription in ventral prostate. Vitam Horm 1969; 27:17–90.

    Article  PubMed  CAS  Google Scholar 

  5. Mainwaring WIP. The mechanism of action of androgen. In: Monographs in endocrinology. New York: Springer-Verlag, 1977.

    Google Scholar 

  6. Evans GS, Chandler JA. Cell proliferation studies in the rat prostate, I. The proliferative role of basal and secretory cells during normal growth. Prostate 1987; 10: 163–178.

    Article  PubMed  CAS  Google Scholar 

  7. English HD, Santen RJ, Isaacs JT. Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate 1987; 11: 229–242.

    Article  PubMed  CAS  Google Scholar 

  8. Evans GS, Chandler JA. Cell proliferation studies in the rat prostate, II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate 1987; 11:339–352.

    Article  PubMed  CAS  Google Scholar 

  9. Isaacs JT. Control of cell proliferation and cell death in the normal and neoplastic prostate: A stem cell model. In: Rodgers CH, Coffey DS, Cunha G, Grayhack JT, Hinman F, Horton R, eds. Benign prostatic hyperplasia; vol. 2. Bethesda, MD: NIH Pub. No. 87-2881, 1987:85–94.

    Google Scholar 

  10. Boyd E. Growth, including reproduction and morphological development. In: Altman, Dittmer, eds. Biological handbooks. Fed Am Soc Experimental Biology, Washington, D.C., 1962:346–348.

    Google Scholar 

  11. Isaacs JT. Common characteristics of human and canine benign prostatic hyperplasia. In: Kimball FA, Buhl AE, Carter DB, eds. New approaches to the study of benign prostatic hyperplasia. New York: Alan R. Liss, 1984:217–234.

    Google Scholar 

  12. Frasier SD, Gafford F, Horton R. Plasma androgens in childhood and adolescence. J Clin Endocrinol Metab 1969; 29:1404–1408.

    Article  PubMed  CAS  Google Scholar 

  13. Moore RA. Benign hypertrophy and carcinoma of the prostate. In: Twombly G, Packs G, eds. Endocrinology of neoplastic diseases. London: Oxford University Press, 1974:194–212.

    Google Scholar 

  14. DeKlerk DP, Heston WDW, Coffey DS. Studies on the role of macromolecular synthesis in the growth of the prostate. In: Grayback JT, Wilson JD, Scherbenske MJ, eds. Benign prostatic hyperplasia. DHEW Pub. No. (NIH) 76-1113, 1975:43–52.

    Google Scholar 

  15. English HF, Kyprianou N, Isaacs JT. Relationship between DNA fragmentation and apoptosis in the programmed cell death in the rat prostate following castration. Prostate 1989; 15:233–251.

    Article  PubMed  CAS  Google Scholar 

  16. Isaacs JT. Antagonistic effect of androgen on prostatic cell death. Prostate 1984; 5: 545–557.

    Article  PubMed  CAS  Google Scholar 

  17. Stanisic T, Sadlowski R, Lee C, Grayhack JT. Partial inhibition of castration-induced ventral prostate regression with actinomycin D and cycloheximide. Invest Urol 1978; 16:19–22.

    PubMed  CAS  Google Scholar 

  18. Kyprianou N, Isaacs JT. Activation of programmed cell death in the rat ventral prostate after castration. Endocrinology 1988; 122:552–562.

    Article  PubMed  CAS  Google Scholar 

  19. Kyprianou N, English HF, Isaacs JT. Activation of a Ca2+-Mg2+-dependent endo-nuclease as an early event in castration-induced prostatic cell death. Prostate 1988; 13:103–118.

    Article  PubMed  CAS  Google Scholar 

  20. Kyprianou N, Isaacs JT. Expression of transforming growth factor-β in the rat ventral prostate during castration-induced programmed cell death. Mol Endocrinol 1989; 3:1515–1522.

    Article  PubMed  CAS  Google Scholar 

  21. Buttyan R, Zaker Z, Lochshin R, Wolgemuth D. Cascade induction of c-fos, c-myc and heat shock 70K transcripts during regression of rat ventral prostate gland. Mol Endocrinol 1988; 2:650–657.

    Article  PubMed  CAS  Google Scholar 

  22. Montpetit ML, Lawless KR, Tenniswood M. Androgen repressed messages in the rat ventral prostate. Prostate 1986; 8:25–36.

    Article  PubMed  CAS  Google Scholar 

  23. Conor J, Sawdzuk IS, Benson MC, et al. Calcium channel antagonists delay regression of androgen-dependent tissues and suppress gene activity associated with cell death. Prostate 1988; 13:119–130.

    Article  Google Scholar 

  24. Buttyan R, Olsson CA, Pintar J, et al. Induction of the TRPM-2 gene in cells undergoing programmed death. Mol Cell Biol 1989; 9:3473–3481.

    PubMed  CAS  Google Scholar 

  25. Carter MF, Chung LWK, Coffey DS. The temporal requirements for androgens during the cell cycle of the prostate gland in urological research. King LR, Murphy GP, eds. New York: Plenum Press, 1972:27–38.

    Google Scholar 

  26. Coffey DS, Shimazaki J, Williams-Ashman HG. Polymerization of deoxyribonucle-otides in relation to androgen-induced prostatic growth. Arch Biochem Biophys 1968; 124:184–198.

    Article  PubMed  CAS  Google Scholar 

  27. Kyprianou N, Isaacs JT. Quantal relationship between prostatic dihydrotestosterone and prostatic cell content: Critical threshold concept. Prostate 1987; 11:41–50.

    Article  PubMed  CAS  Google Scholar 

  28. Saltzman AG, Hiipakka RA, Chang C, Liao S. Androgen repression of the production of a 29 kilodalton protein and its mRNA in the rat ventral prostate. J Biol Chem 1987; 262:432–437.

    PubMed  CAS  Google Scholar 

  29. Lee C, Sensibar JA. Protein of the rat prostate: Synthesis of new proteins in the ventral lobe during castration-induced regression. J Urol 1985; 138:903–908.

    Google Scholar 

  30. Wyllie AH. Glucocorticoid induces in thymocytes a nuclease-like activity associated with the chromatin condensation of apoptosis. Nature 1980; 284:555–556.

    Article  PubMed  CAS  Google Scholar 

  31. Umansky SR, Korol BA, Nelipovich PA. In vivo DNA degradation in thymocytes of γ-irradiated or hydrocortisone-treated rats. Biochem Biophys Acta 1981; 655:9–17.

    PubMed  CAS  Google Scholar 

  32. Cohen JJ, Duke RC. Glucocorticoid activation of a calcium-dependent endonuclease in thymocyte nuclei leads to cell death. J Immunol 1984; 132:38–42.

    PubMed  CAS  Google Scholar 

  33. Wyllie AH, Morris RG, Smith AL, Dunlop D. Chromatin cleavage in apoptosis: Association with condensed chromatin morphology and dependence on macromolecular synthesis. J Pathol 1984; 142:67–77.

    Article  PubMed  CAS  Google Scholar 

  34. Kerr JFR, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 1972; 26:239–257.

    Article  PubMed  CAS  Google Scholar 

  35. Kerr JFR, Searle J. Deletion of cells by apoptosis during castration-induced involution of the rat prostate. Virchowa Archiv B 1973; 13:87–102.

    CAS  Google Scholar 

  36. Bruchovsky N, Wilson JD. The conversion of testosterone to 5 alpha-androstan-17 beta-ol-3-one by rat prostate in vivo and in vitro. J Biol Chem 1968; 243:3012–3021.

    Google Scholar 

  37. Elson SD, Browne CA, Thorburn GD. Identification of epidermal growth factor-like activity in human male reproductive tissues and fluids. J Clin Endocrinol Metab 1984; 58:589–594.

    Article  PubMed  CAS  Google Scholar 

  38. Shikata H, Utsumi N, Hiramatsu M, Minami N, Nemoto N, Shikata. Immunohisto-chemical localization of nerve growth factor and epidermal growth factor in guinea pig prostate gland. Histochemistry 1984; 80:411–413.

    Article  PubMed  CAS  Google Scholar 

  39. Jacobs SC, Story MT, Sasse J, Lawson RK. Characterization of growth factors derived from the rat ventral prostate. J Urol 1988; 139:1106–1110.

    PubMed  CAS  Google Scholar 

  40. Nishi N, Matuo Y, Wade F. Partial purification of a major type of rat prostatic growth factor: Characterization of an epidermal growth factor-related mitogen. Prostate 1988; 12:209–220.

    Article  Google Scholar 

  41. Jacobs SC, Story MT. Exocrine secretion of epidermal growth factor by the rat prostate: effect of adrenergic agents, cholinergic agents, and vasoactive intestinal peptide. Prostate 1988; 13:79–87.

    Article  PubMed  CAS  Google Scholar 

  42. Fowler JE, James LT, Lau LG, Mills SE, Mounzer A. Epidermal growth factor and prostatic carcinoma: An immunohistochemical study. J Urol 1988; 139:857–861.

    PubMed  Google Scholar 

  43. Gregory H, Willshire IR, Kavanagh JP, Blacklock NJ, Chowdury S. Urogastrone-epidermal growth factor concentrations in prostatic fluid of normal individuals and patients with benign prostatic hypertrophy. Clin Sci 1986; 70:359–363.

    PubMed  CAS  Google Scholar 

  44. Connolly JM, Rose DP. Secretion of epidermal growth factor and related polypeptides by the DU 145 human prostate cancer cell line. Prostate 1989; 15:177–186.

    Article  PubMed  CAS  Google Scholar 

  45. Wilding G, Valverius E, Knabbe C, Gelmann EP. Role of transforming growth factor-α in human prostate cancer cell growth. Prostate 1989; 15:1–12.

    Article  PubMed  CAS  Google Scholar 

  46. Traish AM, Wotiz HH. Prostatic epidermal growth factor receptors and their regulation by androgens. Endocrinology 1987; 121:1461–1467.

    Article  PubMed  CAS  Google Scholar 

  47. Fekete M, Redding TW, Comaru-Schally AM, et al. Receptors for luteinizing hormone-releasing hormone, somatostatin, prolactin, and epidermal growth factor in rat and human prostate cancers and in benign prostate hyperplasia. Prostate 1989; 14:191–208.

    Article  PubMed  CAS  Google Scholar 

  48. Davies P, Eaton CL. Binding of epidermal growth factor by human normal, hyper-tropic, and carcinomatous prostate. Prostate 1989; 14:123–132.

    Article  PubMed  CAS  Google Scholar 

  49. Maddy SQ, Chisholm GD, Haekins RA, Habib FK. Localization of epidermal growth factor receptors in the human prostate by biochemical and immunocytochemical methods. J Endocrinol 1987; 113:147–153.

    Article  PubMed  CAS  Google Scholar 

  50. Fiorelli G, DeBellis A, Longo A, Natali A, Costantini A, Serio M. Epidermal growth factor receptors in human hyperplasic prostate tissue and their modulation by chronic treatment with a gonadotropin-releasing hormone analog. J Clin Endocrinol Metab 1989; 68:740–743.

    Article  PubMed  CAS  Google Scholar 

  51. Schuurmans ALG, Bolt J, Mulder E. Androgens stimulate both growth rate and epidermal growth factor receptor activity of the human prostate tumor cell LNCaP. Prostate 1988; 12:55–63.

    Article  PubMed  CAS  Google Scholar 

  52. Sitaras NM, Sariban E, Bravo M, Pantazis P, Antoniades HN. Constitutive production of platelet-derived growth factor-like proteins by human prostate carcinoma cell lines. Cancer Res 1988; 48:1930–1935.

    PubMed  CAS  Google Scholar 

  53. Matuo Y, Nishi N, Tanaka H, Sasaki I, Isaacs JT, Wada F. Production of IGF-II-related peptide by an anaplastic cell line (AT-3) established from the Dunning prostatic carcinoma of rats. In Vitro Cell Dev Biol 1988; 24:1053–1056.

    Article  PubMed  CAS  Google Scholar 

  54. Matuo Y, Nishi N, Matsui S, Sandberg AA, Isaacs JT, Wada F. Heparin binding affinity of rat prostatic growth factor in normal and cancerous prostate: Partial purification and characterization of rat prostatic growth factor in the Dunning tumor. Cancer Res 1987; 47:188–192.

    PubMed  CAS  Google Scholar 

  55. Nishi N, Matuo Y, Kunitomi K, et al. Comparative analysis of growth factors in normal and pathologic human prostates. Prostate 1988; 13:39–48.

    Article  PubMed  CAS  Google Scholar 

  56. Jacobs SC, Russell KL. Mitogenic factor in human prostate extracts. Urology 1980; 16:488–491.

    Article  PubMed  CAS  Google Scholar 

  57. Story MT, Jacobs SC, Lawson RK. Partial purification of a prostatic growth factor. J Urol 1984; 132:1212–1215.

    PubMed  CAS  Google Scholar 

  58. Nishi N, Matuo Y, Muguruma Y, Yoshitake Y, Nishikawa K, Wada F. A human prostatic growth factor (hPGF): Partial purification and characterization. Biochem Biophys Res Commun 1985; 132:1103–1109.

    Article  PubMed  CAS  Google Scholar 

  59. Story MT, Sasse J, Jacobs SC, Lawson RK. Prostatic growth factor purification and structural relationship to basic fibroblast growth factor. Biochemistry 1987; 26: 3843–3849.

    Article  PubMed  CAS  Google Scholar 

  60. Mydlo JH, Bulbul MA, Richon VM, Heston WDW, Fair WR. Heparin-binding growth factor isolated from human prostatic extracts. Prostate 1988; 12:343–355.

    Article  PubMed  CAS  Google Scholar 

  61. Mansson P-E, Adams P, Kan M, McKeehan WL. Heparin-binding growth factor gene expression and receptor characteristics in normal rat prostate and two transplantable rat prostate tumors. Cancer Res 1989; 49:2485–2494.

    PubMed  CAS  Google Scholar 

  62. Smith EP, Russell WE, French FS, Wilson EM. A form of basic fibroblast growth factor is secreted into the adluminal fluid of the rat coagulating gland. Prostate 1989; 12:353–365.

    Article  Google Scholar 

  63. Gospodarowicz D, Neufeld G, Schweigerer L. Fibroblast growth factor. Mol Cell Endocrinol 1986; 46:187–204.

    Article  PubMed  Google Scholar 

  64. Mydlo J, Michaeli J, Heston W, Fair W. Expression of basic fibroblast growth factor mRNA in benign prostatic hyperplasia and prostatic carcinoma. Prostate 1988; 13: 241–248.

    Article  PubMed  CAS  Google Scholar 

  65. Mori H, Maki M, Oishi K, et al. Increased expression of genes for basic fibroblast growth factor and transforming growth factor type β2 in human benign prostatic hyperplasia. Prostate 1990; 16:71–80.

    Article  PubMed  CAS  Google Scholar 

  66. Matuo Y, Nishi N, Takasuka H, et al. Production and significance of TGF-β in AT-3 metastatic cell line established from the Dunning rat prostatic adenocarcinoma. Biochem and Biophys Res Commun 1990; 2:840–847.

    Article  Google Scholar 

  67. Kyprianou N, Isaacs JT. Identification of a cellular receptor for transforming growth factor-β in rat ventral prostate and its negative regulation by androgens. Endocrinology 1988; 123:2124–2131.

    Article  PubMed  CAS  Google Scholar 

  68. Cunha GR, Donjacour A. Stromal-epithelial interactions in normal and abnormal prostatic development. In: Current concepts and approaches to the study of prostate cancer. New York: Alan R. Liss, 1987:251–272.

    Google Scholar 

  69. McKeehan WL, Adams PS, Posser MP. Direct mitogenic effect of insulin, epidermal growth factor, glucocorticoid, cholera toxin, unknown pituitary factors and possibly prolactin, but not androgen, on normal rat prostate epithelial cells in serum-free primary cell culture. Cancer Res 1984; 44:1998–2010.

    PubMed  CAS  Google Scholar 

  70. Nishi N, Matuo Y, Nakamoto T, Wada F. Proliferation of epithelial cells derived from rat dorsolateral prostate in serum-free primary cell culture and their response to androgen. In Vitro Cell Dev Biol 1988; 24:778–786.

    Article  PubMed  CAS  Google Scholar 

  71. Peehl DM, Stanley TA. Growth responses of normal, benign hyperplastic, and malignant human prostatic epithelial cells in vitro to cholera toxin, pituitary extract, and hydrocortisone. Prostate 1986; 8:51–61.

    Article  PubMed  CAS  Google Scholar 

  72. Chaproniere DM, McKeehan WL. Serial culture of single adult human prostatic epithelial cells in serum-free medium containing low calcium and a new growth factor from bovine brain. Cancer Res 1986; 46:819–824.

    PubMed  CAS  Google Scholar 

  73. Merchant DJ, Clarke SM, Harris S. Primary explant culture: An in vitro model of the human prostate. Prostate 1983; 4:52342.

    Article  Google Scholar 

  74. Stoningten OG, Hemmingsen H. Culture of cells as a monolayer derived from the epithelium of the human prostate. J Urol 1971; 106:393–400.

    Google Scholar 

  75. Heatfield BM, Sanefugi H, Trump BF. Studies of carcinogenesis of human prostate, III. Long-term expiant culture of normal prostate and benign prostatic hyperplasia: Transmission and scanning electron microscopy. J Natl Cancer Inst 1982; 69:757–766.

    PubMed  CAS  Google Scholar 

  76. Sanefugi H, Heatfield BM, Trump BF, Young JD Jr. Studies of carcinogenesis of human prostate, II. Long-term expiant culture of normal prostate and benign prostatic hyperplasia: Light microscopy. J Natl Cancer Inst 1982; 69:751–756.

    Google Scholar 

  77. Verhagen APM, Aadlers TW, Ramaekers FCS, Debruyne FMJ, Schalken JA. Differential expression of keratins in the basal and luminal compartments of rat prostatic epithelium during degeneration and regeneration. Prostate 1988; 13:25–38.

    Article  PubMed  CAS  Google Scholar 

  78. Kabalin JN, Peehl DM, Stamey TA. Clonal growth of human prostatic epithelial cells is stimulated by fibroblasts. Prostate 1989; 14:251–263.

    Article  PubMed  CAS  Google Scholar 

  79. Story MT, Livingston B, Baeten L, et al. Cultured human prostate-derived fibroblasts produce a factor that stimulates their growth with properties indistinguishable from basic fibroblast growth factor. Prostate 1989; 15:355–365.

    Article  PubMed  CAS  Google Scholar 

  80. McKeehan WL, Adams PS, Fast D. Different hormonal requirement for androgen-independent growth of normal and tumor epithelial cells from rat prostate. In Vitro Cell Dev Biol 1987; 23:147–152.

    Article  PubMed  CAS  Google Scholar 

  81. McKeehan WL, Adams PS. Heparin-binding growth factor/prostatropin attenuates inhibition of rat prostate tumor epithelial cell growth by transforming growth factor type beta. In Vitro Cell Dev Biol 1987; 24:243–246.

    Article  Google Scholar 

  82. Katz AE, Benson MC, Wise GJ, et al. Gene activity during the early phase of androgen-stimulated rat prostate regrowth. Cancer Res 1989; 49:5889–5894.

    PubMed  CAS  Google Scholar 

  83. Coffey RJ, Leof EB, Shipley GD, Moses HL. Suramin inhibition of growth factor receptor binding and mitogenicity in AKR-2B cells. J Cell Physiol 1987; 132:143–148.

    Article  PubMed  CAS  Google Scholar 

  84. Betsholtz C, Johnson A, Heldin CH, Westermark B. Efficient reversion of simian sarcoma virus-transformation and inhibition of growth factor-induced mitogenesis by suramin. Proc Natl Acad Sci USA 1986; 83:6440–6444.

    Article  PubMed  CAS  Google Scholar 

  85. Sato Y, Rifkin DB. Autocrine activities of basic fibroblast growth factor: Regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis. J Cell Biol 1988; 107:1199–1205.

    Article  PubMed  CAS  Google Scholar 

  86. Neufeld G, Gospodarowicz D. Protamine sulfate inhibits mitogenic activities of the extracellular matrix and fibroblast growth factor, but potentiates that of epidermal growth factor. J Cell Physiol 1987; 132:287–294.

    Article  PubMed  CAS  Google Scholar 

  87. Huang JS, Nishimura J, Huang SS, Deuel TF. Protamine inhibits platelet derived growth factor receptor activity but not epidermal growth factor activity. J Cell Biochem 1984; 26:205–220.

    Article  PubMed  CAS  Google Scholar 

  88. Myers C. Three centers start phase 2 trials with suramin; NCI responses hold up. Clin Cancer Lett 1989; 12:5–6.

    Google Scholar 

  89. Taylor S, Folkman J. Protamine is an inhibitor of angiogenesis. Nature 1982; 297: 307–312.

    Article  PubMed  CAS  Google Scholar 

  90. Nagle RB, Ahmann FR, McDoniel KM, Paquin ML, Clark VA, Celniker A. Cytokeratin characterization of human prostatic carcinoma and its derived cell lines. Cancer Res 1987; 47:281–286.

    PubMed  CAS  Google Scholar 

  91. Ramaekers FCS, Verhagen APM, Isaacs JT, et al. Intermediate filament expression and the progression of prostatic cancer as studied in the Dunning R-3327 rat prostatic carcinoma system. Prostate 1989; 14:323–339.

    Article  PubMed  CAS  Google Scholar 

  92. Scott WW, Menon M, Walsh PC. Hormonal therapy of prostatic cancer. Cancer 1980; 45:1929–1936.

    PubMed  CAS  Google Scholar 

  93. Isaacs JT, Hukka B. Nonrandom-involvement of chromosome 4 in the progression of rat prostatic cancer. Prostate 1988; 13:165–188.

    Article  PubMed  CAS  Google Scholar 

  94. Isaacs JT, Isaacs WB, Feitz WFJ, Scheres J. Establishment and characterization of seven Dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostatic cancers. Prostate 1986; 9:261–281.

    Article  PubMed  CAS  Google Scholar 

  95. Jacobs SC. Spread of prostatic cancer to bone. Urology 1983:337–344.

    Google Scholar 

  96. Chackal-Roy M, Niemeyer C, Moore M, Zetter BR. Stimulation of human prostatic carcinoma cell growth by factors present in human bone marrow. J Clin Invest 1989:43–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Isaacs, J.T., Morton, R.A., Martikainen, P., Isaacs, W.B. (1991). Growth Factors Affecting Normal and Malignant Prostatic Cells. In: Schomberg, D.W. (eds) Growth Factors in Reproduction. Serono Symposia, USA. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3162-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3162-2_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7819-1

  • Online ISBN: 978-1-4612-3162-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics