Skip to main content

Brain-Steroid Interactions and the Control of Aggressiveness in Birds

  • Chapter
Neuroendocrine Perspectives

Part of the book series: Neuroendocrine Perspectives ((NEUROENDOCRINE,volume 9))

Abstract

A. A. Berthold (1849, cited in 1) is credited with pioneering the field of experimental endocrinology. In his classic experiments with roosters, Berthold observed that crowing, sexual behavior and aggressiveness could be eliminated by castration and restored by reimplanting testes, and he came to the important conclusion that the active principle was a blood-borne substance. Since the time of Berthold, the secreted products of the gonads have been identified as steroids, and our understanding of the molecular mechanisms and behavioral manifestations of steroid action in the central nervous system (CNS) has expanded considerably. Nonetheless, gaps in our knowledge remain, and steroid control of vertebrate behavior continues to be a focus of intense investigation. One important area of research has been focused on the hormonal basis of aggressive behavior. In this paper, we will review results of studies in this laboratory in which we have examined the hormonal basis of individual and sex-related differences in the intensity of aggressive displays in the Japanese quail (Coturnix coturnix japonica). As a preface to this detailed consideration of aggressive behavior and brain-steroid interactions in the control of behavior, it is appropriate to consider landmark technical and conceptual advances which are the foundation of present-day research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Witzman RF (1981) Steroids: Keys to Life. New York: Van Nostrand Reinhold

    Google Scholar 

  2. Young WC (1961) The hormones and mating behavior. In: Young WC (ed) Sex and Internal Secretions. Baltimore: Williams & Wilkins: vol 2, pp 1173–1239

    Google Scholar 

  3. Guhl AM (1961) Gonadal hormones and social behavior in infrahuman vertebrates. In: Young WC (ed) Sex and Internal Secretions. Baltimore: Williams & Wilkins: vol 2, pp 1240–1267

    Google Scholar 

  4. Grunt JA, Young WC (1953) Consistency of sexual behavior patterns in individual male guinea pigs following castration and androgen therapy. J Comp Physiol Psychol 46: 138–144

    PubMed  CAS  Google Scholar 

  5. Dantchakoff V (1938) Sur les effets de l’hormone male dans un jeune cobaye femelle traite depuis un stade embryonnais (inversions sexuelles). Compt Rend Soc Biol 127: 1255–1258

    Google Scholar 

  6. Phoenix CH, Goy RW, Gerall AA, Young WC (1959) Organizing action of prenatally administered testosterone propionate on the tissues mediating mating behavior in the female guinea pig. Endocrinology 65: 369–382

    PubMed  CAS  Google Scholar 

  7. Barraclough CA, Leathern JH (1954) Infertility induced in mice by a single injection of testosterone propionate. Proc Soc Exp Biol Med 85: 673–674

    PubMed  CAS  Google Scholar 

  8. Harris GW (1964) Sex hormones, brain development and brain function. Endocrinology 75: 627–648

    PubMed  CAS  Google Scholar 

  9. Jensen EV, Jacobsen HI (1962) Basic guides to the mechanism of estrogen action. Recent Prog Horm Res 18: 387–414

    CAS  Google Scholar 

  10. Pfaff DW (1968) Autoradiographic localization of radioactivity in rat brain after injection of tritiated sex hormones. Science 161: 1355–1356

    PubMed  CAS  Google Scholar 

  11. Stumpf WE (1968) Estradiol-concentrating neurons: topography in the hypothalamus by dry-mount autoradiography. Science 162: 1001–1003

    PubMed  CAS  Google Scholar 

  12. Lisk RD (1960) Estrogen sensitive centers in the hypothalamus of the rat. J Exp Zool 145: 197–208

    PubMed  CAS  Google Scholar 

  13. Heimer L, Larsson K (1967) Drastic changes in the mating behavior of male rats following lesions in the preoptic-anterior hypothalamic continuum. Brain Res 3: 248–263

    Google Scholar 

  14. Raisman G, Field PM (1973) Sexual dimorphism in neurophil of the preoptic area of the rat and its dependence on neonatal androgen. Brain Res 54: 1–29

    PubMed  CAS  Google Scholar 

  15. Nottebohm F, Arnold AP (1976) Sexual dimorphism in vocal control areas of the songbird brain. Science 194: 211–213

    PubMed  CAS  Google Scholar 

  16. Gorski RA, Gordon JH, Shryne JE, Southam AM (1978) Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Res 148: 333–346

    PubMed  CAS  Google Scholar 

  17. Bruchovsky N, Wilson JD (1968) The conversion of testosterone to 5α-androstan-17β-ol-3-one by rat prostate in vivo and in vitro. J Biol Chem 243: 2012–2021

    PubMed  CAS  Google Scholar 

  18. Anderson KM, Liao S (1968) Selective retention of dihydrotestosterone by prostatic nuclei. Nature 219: 277–279

    PubMed  CAS  Google Scholar 

  19. Baggett B, Engel LL, Savard K, Dorfman RI (1956) The conversion of testosterone-14C to 14C-estradiol-17β by human ovarian tissue. J Biol Chem 221: 931–941

    PubMed  CAS  Google Scholar 

  20. Naftolin F, Ryan KJ, Petro Z (1971) Aromatization of androstenedione by limbic system tissue from human fetus. J Endocrinol 51: 795–796

    PubMed  CAS  Google Scholar 

  21. Lieberberg I, McEwen BS (1977) Brain cell nuclear retention of testosterone metabolites 5α-dihydrotestosterone and estradiol-17β in adult rats. Endocrinology 100: 588–597

    Google Scholar 

  22. Wilson EO (1975) Sociobiology: The New Synthesis. Cambridge: Belknap Press

    Google Scholar 

  23. Geist V (1971) Mountain Sheep: A Study in Behavior and Evolution. Chicago: University of Chicago Press

    Google Scholar 

  24. Tinbergen N (1953) Social Behavior in Animals. London: Methuen & Co.

    Google Scholar 

  25. Scott JP, Fredericson E (1951) The causes of fighting in mice and rats. Physiol Zool 24: 273–309

    Google Scholar 

  26. Schjelderup-Ebbe Th (1922) Beitrage zur Social-psychologie des Haushuhns. Z Psychol 88: 225–252

    Google Scholar 

  27. Moyer KE (1971) The Physiology of Hostility. Chicago: Markham Press

    Google Scholar 

  28. Tinbergen N (1935) The behavior of the red-necked phalarope in spring. Ardea 24: 1–42

    Google Scholar 

  29. Floody OR, Pfaff DW (1974) Steroid hormones and aggressive behavior: approaches to the study of hormone-sensitive brain mechanisms for behavior. In: Frazier SH (ed) Aggression. Research publications, Association for Research in Nervous and Mental Diseases, vol 52. Boston: Waverly Press: pp 149–185

    Google Scholar 

  30. Hogan-Warburg AJ (1966) Social behavior of the ruff, Philomachus pugnax (L.). Ardea 54: 109–229

    Google Scholar 

  31. Welty JC (1975) The life of Birds. Philadelphia: W.B. Saunders

    Google Scholar 

  32. Harding CF (1983) Hormonal influences on avian aggressive behavior. In: Svare B (ed) Hormones and Aggressive Behavior. New York: Plenum Press: 435–468

    Google Scholar 

  33. Brown JL (1963) Aggressiveness dominance and social organization in the Stellar’s jay. Condor 65: 460–484

    Google Scholar 

  34. Landau HG (1951) On dominance relations and the structure of animal societies: 1. Effect of inherent characteristics. Bull Math Biophys 13: 1–19

    Google Scholar 

  35. Chase ID (1982) Dynamics of hierarchy formation: the sequential development of dominance relationships. Behavior 80: 218–238

    Google Scholar 

  36. McBride G (1958) The measurement of aggressiveness on the domestic hen. Anim Behav 6: 87–91

    Google Scholar 

  37. Selinger HE, Bermant G (1967) Hormonal control of aggressive behavior in Japanese quail (Coturnix coturnix japonica). Behavior 28: 255–268

    CAS  Google Scholar 

  38. Balthazart J, Massa R, Negri-Cesi P (1979) Photoperiodic control of testosterone metabolism, plasma gonadotrophins, doacal gland growth and reproductive behavior in the Japanese quail. Gen Comp Endocrinol 39: 222–235

    PubMed  CAS  Google Scholar 

  39. Tsutsui K, Ishii S (1981) Effects of sex steroids on aggressive behavior of adult male Japanese quail. Gen Comp Endocrinol 44: 480–486

    PubMed  CAS  Google Scholar 

  40. Ramenofsky M (1984) Agonistic behavior and endogenous plasma hormones in male Japanese quail. Anim Behav 32: 698–708

    CAS  Google Scholar 

  41. Delville Y, Hendrick J-C, Sulon J, Balthazart J (1984) Testosterone metabolism and testosterone dependent characteristics in Japanese quail. Physiol Behav 33: 817–823

    PubMed  CAS  Google Scholar 

  42. Sachs B (1966) Sexual-aggressive interactions among pairs of quail (Coturnix coturnix japonica). Am Zool 6: 559

    Google Scholar 

  43. Wilson MI, Bermant G (1972) An analysis of social interaction in the Japanese quail Coturnix coturnix japonica. Anim Behav 20: 252–258

    Google Scholar 

  44. Adkins EK, Adler NT (1972) Hormonal control of behavior in the Japanese quail. J Comp Physiol Psychol 81: 27–36

    PubMed  CAS  Google Scholar 

  45. Noble GK, Wurm M, Schmidt A (1938) Social behavior of the black-crowned night heron. Auk 55: 7–40

    Google Scholar 

  46. Lack D (1943) The Life of the Robin. London: Witherby

    Google Scholar 

  47. Brown JL (1970) The neural control of aggression. In: Southwick CH (ed) Animal Aggression: Selected Readings. New York: Von Nostrand Reinhold: pp 164–186

    Google Scholar 

  48. McKinney F, Guminski-Sorenson L, Hart M (1990) Multiple functions of courtship displays in dabbling ducks (Anatini). Auk 107: 188–191

    Google Scholar 

  49. Hutchison JB, Steimer Th (1984) Androgen metabolism in the brain: behavioral correlates. Prog Brain Res 61: 23–51

    PubMed  CAS  Google Scholar 

  50. Schlinger BA, Fivizzani A, Callard GV (1989) Aromatase 5α-and 5β-reductase in brain pituitary and skin of the sex role-reversed Wilson’s phalarope. J Endocrinol 122: 573–581

    PubMed  CAS  Google Scholar 

  51. Schlinger BA, Palter B, Callard GV (1987) A method to quantify aggressiveness in Japanese quail (Coturnix c. japonica). Physiol Behav 40: 343–348

    PubMed  CAS  Google Scholar 

  52. Wingfield JC, Farner DS (1980) Control of seasonal reproduction in temperate-zone birds. Prog Reprod Biol 5: 62–101

    CAS  Google Scholar 

  53. Follett BK, Robinson JE (1980) Photoperiod and gonadotrophin secretion in birds. Prog Reprod Biol 5: 39–61

    CAS  Google Scholar 

  54. Schlinger BA (1987) Plasma androgens and aggressiveness in captive winter white-throated sparrows (Zonotrichia albicollis). Horm Behav 21: 203–210

    PubMed  CAS  Google Scholar 

  55. Schlinger BA, Callard GV (1989) Localization of aromatase in synaptosomal and microsomal subfractions of quail (Coturnix coturnix japonica) brain. Neuroendocrinology 49: 434–441

    PubMed  CAS  Google Scholar 

  56. Schlinger BA, Callard GV (1990) Aromatase mediates aggressive behavior in Japanese quail. Gen Comp Endocrinol 79: 39–53

    PubMed  CAS  Google Scholar 

  57. Harding CF, Follett BK (1979) Hormonal changes triggered by aggression in a natural population of blackbirds. Science 203: 918–920

    PubMed  CAS  Google Scholar 

  58. Wingfield JC (1985) Short-term changes in plasma levels of hormones during establishment and defense of a breeding territory in male song sparrows, Melospiza melodia. Horm Behav 19: 174–187

    PubMed  CAS  Google Scholar 

  59. O’Connell ME, Reboulleau C, Feder HH, Silver R (1981) Social interactions and androgen levels in birds: 1. Female characteristics associated with increased plasma androgen levels in the male ring dove (Streptopelia risoria). Gen Comp Endocrinol 44: 454–469

    PubMed  Google Scholar 

  60. Wingfield JC, Ramenofsky M (1985) Testosterone and aggressive behavior during the reproductive cycle of male birds. In: Gilles R, Balthazart J (eds) Neurobiology. Berlin: Springer-Verlag: pp 92–104

    Google Scholar 

  61. Edwards DA, Burge KG (1971) Estrogenic arousal of aggressive behavior and masculine sexual behavior in male and female mice. Horm Behav 2: 239–245

    CAS  Google Scholar 

  62. Brain PF, Haug M, Kamis A (1983) Hormones and different tests for aggression with particular reference to the effects of testosterone metabolites. In: Balthazart J, Prove E, Gilles R (eds) Hormones and Behaviour in Higher Vertebrates. Berlin: Springer-Verlag: pp 290–304

    Google Scholar 

  63. Christie MH, Barfield RJ (1979) Effects of aromatizable androgens on aggressive behavior among rats (Rattus norwegicus). J Endocrinol 83: 17–26

    PubMed  CAS  Google Scholar 

  64. Vandenbergh JA (1971) The effects of gonadal hormones on the aggressive behavior of adult golden hamsters (Mesocricetus auratus). Anim Behav 19: 589–594

    PubMed  CAS  Google Scholar 

  65. Beach FA (1942) Copulatory behavior in prepubertally castrated male rats and its modification by estrogen administration. Endocrinology 31: 679–683

    Google Scholar 

  66. Pfaff DW (1970) Nature of sex hormone effects on rat sex behavior: specificity of effects and individual patterns of response. J Comp Physiol Psychol 72: 349–358

    Google Scholar 

  67. Davidson JM (1969) Effects of estrogen on the sexual behavior of male rats. Endocrinology 84: 1365–1372

    PubMed  CAS  Google Scholar 

  68. McDonald P, Beyer C, Newton F, Brien F, Baker R, Tan HS, Sampson C, Kitching P, Greenhill R, Pritchard D (1970) Failure of 5α-dihydrotestosterone to initiate sexual behavior in the castrated male rat. Nature 227: 964–965

    PubMed  CAS  Google Scholar 

  69. Baum MJ, Vreeburg JTM (1973) Copulation in castrated male rats following combined treatment with estradiol and dihydrotestosterone. Science 182: 283–285

    PubMed  CAS  Google Scholar 

  70. Feder HH, Naftolin F, Ryan KJ (1974) Male and female sexual responses and 5α-androstan-17β-ol-3-one propionate. Endocrinology 94: 136–141

    PubMed  CAS  Google Scholar 

  71. Harding CF, Walters MJ, Collado D, Sheridan K (1988) Hormonal specificity and activation of social behavior in male red-winged blackbirds. Horm Behav 22: 402–418

    PubMed  CAS  Google Scholar 

  72. Archawaranon M, Haven-Wiley R (1988) Control of aggression and dominance in white-throated sparrows by testosterone and its metabolites. Horm Behav 22: 497–517

    PubMed  CAS  Google Scholar 

  73. Adkins EK, Boop JJ, Koutnik DK, Morris JB, Pniewski EE (1980) Further evidence that androgen aromatization is essential for the activation of copulation in male quail. Physiol Behav 24: 441–446

    PubMed  CAS  Google Scholar 

  74. Wada M (1984) Effects of ventricularly implanted sex steroids on calling locomotor activity and sexual behavior in castrated male Japanese quail. Horm Behav 18: 130–139

    PubMed  CAS  Google Scholar 

  75. Silver R, O’Connell M, Saad R (1979) Effect of androgen on the behavior of birds. In: Beyer C (ed) Endocrine Control of Sexual Behavior. New York: Raven Press: pp 223–278

    Google Scholar 

  76. Cheng MF, Lehrman DS (1975) Gonadal hormone specificity in the sexual behavior of ring doves. Psychoneuroendocrinology 1: 95–102

    CAS  Google Scholar 

  77. Adkins-Regan E (1981) Effects of sex steroids on the reproductive behavior of castrated male ring doves. Physiol Behav 26: 561–565

    PubMed  CAS  Google Scholar 

  78. Eaton GG, Resko JA (1974) Plasma testosterone and male dominance in Japanese macaque troops with repeated measures of testosterone in laboratory males. Horm Behav 5: 251–259

    PubMed  CAS  Google Scholar 

  79. Kling A (1975) Testosterone and aggressive behavior in man and non-human primates. In: Eleftheriou BE, Sprott RL (eds) Hormonal Correlates of Behavior. New York: Plenum Press: pp 305–324

    Google Scholar 

  80. Harding CF, Feder HH (1976) Relation between individual differences in sexual behavior and plasma testosterone levels in the guinea pig. Endocrinology 98: 1198–1205

    PubMed  CAS  Google Scholar 

  81. Selmanoff MK, Goldman BD, Ginsberg BE (1977) Serum testosterone agonistic behavior and dominance in inbred strains of mice. Horm Behav 8: 107–119

    PubMed  CAS  Google Scholar 

  82. Lumia AR (1972) The relationships among testosterone, conditioned aggression and dominance in male pigeons. Horm Behav 3: 277–286

    PubMed  CAS  Google Scholar 

  83. Rohwer S, Rohwer FC (1978) Status signalling in Harris sparrows: experimental deceptions achieved. Anim Behav 26: 1012–1022

    Google Scholar 

  84. Leshner AI (1978) An Introduction to Behavioral Endocrinology. New York: Oxford University Press

    Google Scholar 

  85. Edwards DA (1969) Early androgen stimulation and aggressive behavior in male and female mice. Physiol Behav 4: 333–338

    Google Scholar 

  86. Damassa DA, Smith ER, Tennent B, Davidson JM (1977) The relationship between circulating testosterone levels and male sexual behavior in rats. Horm Behav 8: 275–286

    PubMed  CAS  Google Scholar 

  87. Hart BL, Leedy MG (1985) Neurological basis of male sexual behavior: a comparative analysis. In: Adler N, Pfaff D, Goy RW (eds) Handbook of Behavioral Neurobiology. New York: Plenum Press: vol 7, pp 373–422

    Google Scholar 

  88. Malsbury CW (1971) Facilitation of male rat copulatory behavior by electrical stimulation of the medial preoptic area. Physiol Behav 7: 797–805

    PubMed  CAS  Google Scholar 

  89. Perarchio AA, Marr ID, Alexander M (1979) Sexual behavior in male rhesus monkeys elicited by electrical stimulation of preoptic and hypothalamic areas. Brain Res 177: 127–144

    Google Scholar 

  90. Slimp JC, Hart BL, Goy RW (1978) Heterosexual, autosexual and social behavior of adult male rhesus monkeys with medial preoptic-anterior hypothalamic lesions. Brain Res 142: 105–122

    PubMed  CAS  Google Scholar 

  91. Lisk RD (1967) Neural localization for androgen activation of copulatory behavior in the male rat. Endocrinology 80: 754–761

    PubMed  CAS  Google Scholar 

  92. Christensen LW, Clemens LG (1974) Intrahypothalamic implants of testosterone or estradiol and resumption of masculine sexual behavior in long-term castrated male rats. Endocrinology 95: 984–990

    PubMed  CAS  Google Scholar 

  93. Breedlove SM, Arnold AP (1980) Hormone accumulation in a sexually dimorphic motor nucleus in the rat spinal cord. Science 210: 565–566

    Google Scholar 

  94. Hutchison JB (1967) Initiation of courtship by hypothalamic implants of testosterone propionate in castrated doves (Streptopilia risoria). Nature 216: 591–592

    PubMed  CAS  Google Scholar 

  95. Barfield RJ (1971) Activation of sexual and aggressive behavior by androgen implanted into the male ring dove brain. Endocrinology 89: 1470–1476

    PubMed  CAS  Google Scholar 

  96. Watson JT, Teunis F, Valedon A, Adkins-Regan E (1986) Activation of male and female sexual behavior with intracranial sex steroid implants in the Japanese quail. Soc Neurosci Absts 12: 835

    Google Scholar 

  97. Barfield RJ (1965) Effects of preoptic lesions on the sexual behavior of male domestic fowl. Am Zool 5: 686–687

    Google Scholar 

  98. Maley MJ (1969) Electrical stimulation of agonistic behavior in the mallard. Behavior 34: 138–160

    Google Scholar 

  99. Phillips RE, Youngren OM (1971) Brain stimulation and species typical behavior: activities evoked by electrical stimulation of the brain of chickens (Gallus gallus). Anim Behav 19: 757–799

    PubMed  CAS  Google Scholar 

  100. Delhis JD (1973) Agonistic behavior of juvenile gulls: a neuroethological study. Anim Behav 21: 236–246

    Google Scholar 

  101. Crews D, Silver R (1985) Reproductive physiology and behavior interactions in nonmammalian vertebrates. In: Adler N, Pfaff D, Goy RW (eds) Handbook of Behavioral Neurobiology. New York: Plenum Press: vol 7, pp 101–182

    Google Scholar 

  102. Morrell JI, Pfaff DW (1978) Autographic technique for steroid hormone localization: application to the vertebrate brain. In: Adler NT (ed) Neuroendocrinology of Reproduction. New York: Raven Press: pp 519–532

    Google Scholar 

  103. Kelley DB, Lieberberg I, McEwen BS, Pfaff DW (1978) Autoradiographic and biochemical studies of steroid hormone-concentrating cells in the brain of Rana pipiens. Brain Res 140: 287–305

    PubMed  CAS  Google Scholar 

  104. Cottingham SL, Pfaff D (1986) Interconnectedness of steroid hormone-binding neurons: existence and implications. In: Ganten D, Pfaff D (eds) Current Topics in Neuroendocrinology. Berlin: Springer-Verlag: vol 7, pp 223–249

    Google Scholar 

  105. McEwen BS, DeNoet ER, Rostene W (1986) Adrenal steroid receptors and actions in the nervous system. Physiol Rev 66: 1121–1188

    PubMed  CAS  Google Scholar 

  106. Watson JT, Adkins-Regan E (1989) Neuroanatomical localization of sex steroid-concentrating cells in the Japanese quail (Coturnix japonica): autoradiography with [3H]-testosterone, [3H]-estradiol and [3H]-dihydrotestosterone. Neuroendocrinology 49: 51–64

    PubMed  CAS  Google Scholar 

  107. Gahr M, Flugge G, Guttinger H-R (1987) Immunocytochemical localization of estrogen binding neurons in the songbird brain. Brain Res 402: 173–177

    PubMed  CAS  Google Scholar 

  108. Zigmond RE, Nottebohm F, Pfaff DW (1973) Androgen-concentrating cells in the midbrain of a songbird. Science 179: 1005–1007

    PubMed  CAS  Google Scholar 

  109. Arnold AP, Bottjer SW, Brenowitz EA, Nordeen EJ, Nordeen KW (1986) Sexual dimorphisms in the neural vocal control system in song birds: ontogeny and phylogeny. Brain Behav Evol 28: 22–31

    PubMed  CAS  Google Scholar 

  110. Gorski RA, Jacobson CD (1982) Sexual differentiation of the brain. Front Horm Res 10: 1–14

    Google Scholar 

  111. Swaab DF, Fliers E (1985) A sexually dimorphic nucleus in the human brain. Science 228: 1112–1115

    PubMed  CAS  Google Scholar 

  112. Viglietti-Panzica C, Panzica GC, Fiori MG, Calcagni M, Anselmetti GC, Balthazart J (1986) A sexually dimorphic nucleus in the quail preoptic area. Neurosci Letts 64: 129–134

    CAS  Google Scholar 

  113. Nottebohm F, Stokes TM, Leonard CM (1976) Central control of song in the canary Sennus cananus. J Comp Neurol 165: 457–486

    PubMed  CAS  Google Scholar 

  114. Brenowitz EA, Arnold AP, Levin RN (1985) Neural correlates of female song in tropical duetting birds. Brain Res 343: 104–112

    PubMed  CAS  Google Scholar 

  115. Fine ML, Keefer DA, Leichnetz GR (1982) Testosterone uptake in the brainstem of a sound-producing fish. Science 215: 1265–1267

    PubMed  CAS  Google Scholar 

  116. Toran-Allerand CD (1976) Sex steroids and the development of the newborn mouse hypothalamus and preoptic area in vitro: implications for sexual differentiation. Brain Res 106: 407–412

    PubMed  CAS  Google Scholar 

  117. Nordeen EJ, Nordeen KW, Sengelaub DR, Arnold AP (1985) Androgens prevent normally occuring cell death in a sexually dimorphic spinal nucleus. Science 229: 671–673

    PubMed  CAS  Google Scholar 

  118. McEwen BS, Biegon A, Davis PG, Krey LC, Luine VN, McGinnis MY, Paden CM, Parsons B, Rainbow TC (1983) Steroid hormones: hormonal signals which alter brain cell properties and functions. Recent Prog Horm Res 30: 41–92

    Google Scholar 

  119. Evans RM (1988) The steroid and thyroid hormone receptor superfamily. Science 240: 889–895

    PubMed  CAS  Google Scholar 

  120. Spelsberg TC, Rories C, Rejman JJ, Goldberger A, Fink K, Lau CK, Colvard DS, Wiseman G (1989) Steroid action on gene expression: possible roles of regulatory genes and nuclear acceptor sites. Biol Reprod 40: 54–69

    PubMed  CAS  Google Scholar 

  121. Blaustein JD, Olster DH (1989) Gonadal steroid hormone receptors and social behaviors. In: Balthazart J (ed) Advances in Comparative and Environmental Physiology. Berlin: Springer-Verlag: pp 31–103

    Google Scholar 

  122. Peck EJ Jr, Miller AL, Keiner KL (1979) Estrogen receptors and the activation of RNA polymerases by estrogens in the central nervous system. In: Hamilton TH, Clark JH, Sadler WA (eds) Ontogeny of Receptors and Reproductive Hormone Action. New York: Raven Press: pp 403–410

    Google Scholar 

  123. McEwen BS, Davis PG, Parsons B, Pfaff DW (1979) The brain as a target for steroid hormone action. Annu Rev Neurosci 2: 65–112

    PubMed  CAS  Google Scholar 

  124. King WJ, Greene GL (1984) Monoclonal antibodies localize estrogen receptor in the nuclei of target cells. Nature 307: 747–749

    Google Scholar 

  125. Welshons WV, Lieberman ME, Gorski J (1984) Nuclear localization of unoccupied oestrogen receptors. Nature 307: 745–747

    Google Scholar 

  126. Schlatterer B, Roth U (1984) Cell fractionation of lamb uterus in non-aqueous media and nuclear compartmentalization of the oestrogen receptor. J Vet Med A 31: 431–436

    CAS  Google Scholar 

  127. Walters MR (1985) Steroid hormone receptors and the nucleus. Endocrine Rev 6: 512–543

    CAS  Google Scholar 

  128. Callard GV, Mak P (1985) Exclusive nuclear localization of estrogen receptors in Squalus testis. Proc Natl Acad Sci USA 82: 1336–1340

    PubMed  CAS  Google Scholar 

  129. Krey LC, Lieberberg I, Roy E, McEwen BS (1979) Oestradiol plus receptor complexes in the brain and anterior pituitary gland: quantitation and neuroendocrine significance. J Steroid Biochem 11: 279–284

    PubMed  CAS  Google Scholar 

  130. Keiner KL, Peck EJ (1984) Differential sensitivity of estrogen target tissues: implications for estrogen regulation of serum luteinizing hormone. J Neurosci Res 11: 79–89

    Google Scholar 

  131. MacLusky NJ, Lieberberg I, McEwen BS (1979) The development of estrogen receptor systems in the rat brain and pituitary. Brain Res 189: 262–268

    Google Scholar 

  132. Rainbow TC, Parsons B, McEwen BS (1982) Sex differences in rat brain oestrogens and progestin receptors. Nature 300: 648–649

    PubMed  CAS  Google Scholar 

  133. Gahr M, Konishi M (1988) Developmental changes in estrogen-sensitive neurons in the forebrain of the zebra finch. Proc Natl Acad Sci USA 85: 7380–7383

    PubMed  CAS  Google Scholar 

  134. Harding CF, Walters MJ, Parsons B (1984) Androgen receptor levels in hypothalamic and vocal control nuclei in the male zebra finch. Brain Res 306: 333–339

    PubMed  CAS  Google Scholar 

  135. Siegel LI, Akutagawa E, Fox TO, Konishi M, Politch JA (1986) Androgen and estrogen receptors in adult zebra finch brain. J Neurosci Res 16: 617–628

    PubMed  CAS  Google Scholar 

  136. Arnold AP, Saltiel A (1979) Sexual difference in pattern of hormone accumulation in the brain of a songbird. Science 205: 702–705

    PubMed  CAS  Google Scholar 

  137. Pasmanik M, Callard GV (1985) Aromatase and 5α-reductase in the teleost brain spinal cord and pituitary gland. Gen Comp Endocrinol 60: 244–251

    PubMed  CAS  Google Scholar 

  138. Thrower S, Lim I (1980) A comparison of the relationships between progestin receptors and oestrogen receptors in neural and non-neural target tissues of the rat during the oestrus cycle. Biochem J 190: 691–695

    PubMed  CAS  Google Scholar 

  139. Pelletier J, Caraty A (1981) Characterization of cytosolic 5α-DHT and 17β-estradiol receptors in the ram hypothalamus. J Steroid Biochem 14: 603–611

    PubMed  CAS  Google Scholar 

  140. Glass JD, Amann RP, Nett TM (1984) Effects of season and sex on the distribution of cytosolic estrogen receptors within the brain and the anterior pituitary gland of sheep. Biol Reprod 30: 894–902

    PubMed  CAS  Google Scholar 

  141. Leavitt WW, Chen TJ, Evans RW (1979) Regulation and function of estrogen and progesterone receptor systems. In: Leavitt WW, Clark JH (eds) Steroid Hormone Receptor Systems. New York: Plenum Press: pp 197–222

    Google Scholar 

  142. Blondeau JP, Baulieu EE, Robel P (1982) Androgen-dependent regulation of androgen nuclear receptor in the rat ventral prostate. Endocrinology 110: 1926–1932

    PubMed  CAS  Google Scholar 

  143. Blaustein JD, Brown TJ (1984) Progesterone decreases the concentration of hypothalamic and anterior pituitary estrogen receptors in ovariectomized rats. Brain Res 304: 225–236

    PubMed  CAS  Google Scholar 

  144. Pasmanik M, Callard GV (1988) A high abundance androgen receptor in goldfish brain: characteristics and seasonal changes. Endocrinology 123: 1162–1171

    PubMed  CAS  Google Scholar 

  145. Roy EJ, Wade GN (1977) Binding of 3H-estradiol by brain cell nuclei and female rat sexual behavior: inhibition by antiestrogens. Brain Res 126: 73–87

    PubMed  CAS  Google Scholar 

  146. Jouan P, Samperez S (1980) Metabolism of steroid hormones in the brain. In: Motta M (ed) The Endocrine Function of the Brain. New York: Raven Press: pp 95–115

    Google Scholar 

  147. Callard GV (1983) Androgen and estrogen action in the vertebrate brain. Am Zool 23: 607–620

    CAS  Google Scholar 

  148. Thieulant ML, Samperez S, Jouan P (1981) Evidence for 5α-androstan-3β, 17β-diol binding to the estrogen receptor in the cytosol from male rat pituitary. Endocrinology 108: 1552–1560

    PubMed  CAS  Google Scholar 

  149. Ball P, Knuppen R, Haupt M, Breuer H (1972) Interactions between estrogens and catecholamines. III. Studies on the methylation of catechol estrogens, catecholamines and other catechols by the catechol-O-methyltransferase of human liver. J Clin Endocrinol Metab 34: 736–746

    PubMed  CAS  Google Scholar 

  150. Lloyd T, Weisz J (1978) Direct inhibition of tyrosine hydroxylase activity by catechol estrogens. J Biol Chem 253: 4841–4843

    PubMed  CAS  Google Scholar 

  151. Goto J, Fishman J (1977) Participation of a non-enzymatic transformation in the biosynthesis of estrogens from androgens. Science 195: 80–81

    PubMed  CAS  Google Scholar 

  152. Naftolin F, Ryan KJ, Davies IJ, Reddy W, Flores F, Petro Z, Kuhn M, White RJ, Takaoka Y, Wolin L (1975) The formation of estrogens by central neuroendocrine tissues. Recent Prog Horm Res 31: 255–319

    Google Scholar 

  153. Callard GV, Petro Z, Tashjian AH Jr (1983) Identification of aromatase activity in rodent pituitary cell strains. Endocrinology 113: 152–158

    PubMed  CAS  Google Scholar 

  154. Schlinger BA, Callard GV (1987) A comparison of aromatase 5α-and 5β-reductase activities in the brain and pituitary of male and female quail (C. c. japonica). J Exp Zool 242: 171–180

    PubMed  CAS  Google Scholar 

  155. Siiteli PK, Febres F (1979) Ovarian hormone synthesis circulation and mechanisms of action. In: DeGroot LJ, Canili GF, Odell WD, Martini L, Potts JT, Nelson DH, Steinberger E, Wingard AI (eds) Endocrinology. New York: Grune and Stratton: pp 1401–1417

    Google Scholar 

  156. Ryan KJ (1959) Biological aromatization of steroids. J Biol Chem 234: 268–272

    PubMed  CAS  Google Scholar 

  157. Schlinger BA, Callard GV (1989) Estrogen receptor in quail brain: a functional relationship to aromatase and aggressiveness. Biol Reprod 40: 268–275

    PubMed  CAS  Google Scholar 

  158. Mak P, Zenn R, Callard GV (1985) Subcelluar distribution oand reaction kinetics of aromatase in goldfish brain. Endocrine Society, 67th Annual Meeting, Baltimore, MD, Abstract 1060

    Google Scholar 

  159. Schumacher M, Balthazart J (1986) Testosterone-induced brain aromatase is sexually dimorphic. Brain Res 370: 285–293

    PubMed  CAS  Google Scholar 

  160. MacLusky NJ, Naftolin F, Goldman-Rakic PS (1986) Estrogen formation and binding in the cerebral cortex of the developing rhesus monkey. Proc Natl Acad Sci USA 83: 513–516

    PubMed  CAS  Google Scholar 

  161. Callard GV (1984) Aromatization in brain and pituitary: an evolutionary prespective. In: Celotti F, Naftolin F, Martini L (eds) Metabolism of Hormonal Steroids in the Neuroendocrine Structures. New York: Raven Press: pp 79–102

    Google Scholar 

  162. Vockel A, Prove E, Balthazart J (1989) Sex-and age-related differences in the activity of testosterone metabolizing enzymes in microdissected nuclei of the zebra finch brain. Brain Res 511: 291–302

    Google Scholar 

  163. Walters MJ, McEwen BS, Harding CF (1988) Estrogen receptor levels in hypothalamic and vocal control nuclei in the male zebra finch. Brain Res 459: 37–43

    PubMed  CAS  Google Scholar 

  164. Beyer C, Morali G, Naftolin F, Larsson K, Perez-Palacios G (1976) Effect of some antiestrogens and aromatase inhibitors on androgen-induced sexual behavior in castrated male rats. Horm Behav 7: 353–363

    PubMed  CAS  Google Scholar 

  165. Morali G, Larsson K, Beyer C (1977) Inhibition of testosterone-induced sexual behavior in the castrated male rat by aromatase inhibitors. Horm Behav 9: 203–213

    PubMed  CAS  Google Scholar 

  166. Christensen LW, Clemens LG (1975) Blockade of testosterone-induced mounting behavior in the male rat with intracranial application of the aromatization inhibitor androst-1,4,6-triene-3,17-dione. Endocrinology 97: 1545–1551

    PubMed  CAS  Google Scholar 

  167. Walters MJ, Harding CF (1988) The effects of an aromatization inhibitor on the reproductive behavior of male zebra finches. Horm Behav 22: 207–218

    PubMed  CAS  Google Scholar 

  168. Kaplan ME, McGinnis MY (1989) Effects of ATD on male sexual behavior and androgen receptor binding: a reexamination of the aromatization hypothesis. Horm Behav 23: 10–26

    PubMed  CAS  Google Scholar 

  169. Clark CR, Nowell NW (1979) The effect of the anti-estrogen CI-628 on androgen-induced aggressive behavior in castrated male mice. Horm Behav 12: 205–210

    PubMed  CAS  Google Scholar 

  170. Adkins EK (1976) Embryonic exposure to an anti-estrogen masculinizes behavior of female quail. Physiol Behav 17: 357–359

    PubMed  CAS  Google Scholar 

  171. Adkins-Regan E (1985) Exposure of embryos to an aromatization inhibitor increases copulatory behavior of male quail. Behav Proc 11: 153–158

    Google Scholar 

  172. Schlinger BA, Callard GV (1989) Aromatase activity in quail brain: correlation with aggressiveness. Endocrinology 124: 437–443

    PubMed  CAS  Google Scholar 

  173. Reddy WR, Naftolin F, Ryan KJ (1973) Aromatization in the central nervous system of rabbits: effects of castration and hormone treatment. Endocrinology 92: 589–594

    PubMed  CAS  Google Scholar 

  174. Callard GV, Hoffman RA, Petro Z, Ryan KJ (1979) In vitro aromatization and other androgen transformations in the brain of the hamster (Mesocricetus auratus). Biol Reprod 21: 33–38

    PubMed  CAS  Google Scholar 

  175. Vito CC, Fox TO (1983) Androgen and estrogen receptors in embryonic and neonatal rat brain. Dev Brain Res 2: 97–110

    Google Scholar 

  176. Callard GV, Kunz T, Petro Z (1983b) Identification of androgen metabolic pathways in the brain of little brown bats (Myotis lucifugus): sex and seasonal differences. Biol Reprod 28: 1155–1161

    PubMed  CAS  Google Scholar 

  177. Hutchison JB, Steimer T (1981) Brain 5β-reductase: a correlate of behavioral sensitivity to androgen. Science 213: 244–246

    PubMed  CAS  Google Scholar 

  178. Schumacher M, Contenti E, Balthazart J (1984) Partial characterization of testosterone-metabolizing enzymes in the quail brain. Brain Res 305: 51–59

    PubMed  CAS  Google Scholar 

  179. Sharp PJ, Armstrong DG, Moss R (1986) Changes in aromatase activity in neuroendocrine tissues of red grouse (Lagopus lagopus scoticus) in relation to the development of long-day refractoriness. J Endocrinol 108: 129–135

    PubMed  CAS  Google Scholar 

  180. Callard GV, Petro Z, Ryan KJ (1978) Conversion of androgen to estrogen and other steroids in the vertebrate brain. Am Zool 18: 511–523

    CAS  Google Scholar 

  181. Pasmanik M, Callard GV (1988) Changes in brain aromatase and 5α-reductase activities correlate significantly with seasonal reproductive cycles in goldfish (Carassius auratus). Endocrinology 122: 1349–1356

    PubMed  CAS  Google Scholar 

  182. Schlinger BA, Scanes C, Randhawa M, Callard GV (1984) Distribution of aromatase activity in quail brain (C. c. japonica): effect of photoperiod and castration. J Steroid Biochem 20: 1571

    Google Scholar 

  183. Roselli CE, Resko JA (1986) Effects of gonadectomy and androgen treatment on aromatase activity in fetal monkey brain. Biol Reprod 35: 106–112

    PubMed  CAS  Google Scholar 

  184. Roselli CE, Ellenwood WE, Resko JA (1984) Regulation of aromatase activity in rats. Endocrinology 114: 192–200

    PubMed  CAS  Google Scholar 

  185. Hutchison JB, Steimer T (1986) Formation of behaviorally effective 17β-estradiol in the dove brain: steroid control of pre-optic aromatase. Endocrinology 118: 2180–2187

    PubMed  CAS  Google Scholar 

  186. Pasmanik M, Schlinger BA, Callard GV (1988) In vivo steroid regulation of aromatase and 5α-reductase in goldfish brain and pituitary. Gen Comp Endocrinol 71: 175–182

    PubMed  CAS  Google Scholar 

  187. Dudley SD, Salisbury RS, Adkins-Regan EK, Weisz J (1984) Courtship stimulates aromatase activity in preoptic area of brain in male ring doves. Endocrinology 115: 1224–1226

    PubMed  CAS  Google Scholar 

  188. Callard GV, Mak P, Solomon D (1986) Effects of short days on aromatization and accumulation of nuclear estrogen receptors in the hamster brain. Biol Reprod 35: 282–291

    PubMed  CAS  Google Scholar 

  189. Martini L (1982) The 5α-reduction of testosterone in the neuroendocrine structures. Biochemical and biophysical implications. Endocrine Rev 3: 1–25

    CAS  Google Scholar 

  190. Resko JA, Stadelman HL, Handa RJ (1986) Control of 5α-reduction of testosterone in neuroendocrine tissues of female rats. Biol Reprod 34: 870–877

    PubMed  CAS  Google Scholar 

  191. Jouan P, Samperez S (1980) Metabolism of steroid hormones in the brain. In: Motta M (ed) The Endocrine Functions of the Brain. New York: Raven Press: pp 95–115

    Google Scholar 

  192. Noma K, Sato B, Yano S, Yamamura Y (1975) Metabolism of testosterone in hypothalamus of male rat. J Steroid Biochem 6: 1261–1266

    PubMed  CAS  Google Scholar 

  193. Verhoeven G, Lamberigts G, Demoor P (1974) Nucleus associated 5α-reductase activity and androgen responsiveness. A study in various organs and brain regions of rat. J Steroid Biochem 5: 93–100

    PubMed  CAS  Google Scholar 

  194. Selmanoff MK, Brodkin LD, Weiner RI, Siiteri PK (1977) Aromatization and 5α-reduction of androgens in discrete hypothalamic and limbic regions of the male and female rat. Endocrinology 101: 841–848

    PubMed  CAS  Google Scholar 

  195. Roselli CE, Stadelman H, Horton LE, Resko JA (1987) Regulation of androgen metabolism, luteinizing hormone-releasing hormone content in discrete hypothalamic and limbic areas of male rhesus macaques. Endocrinology 120: 97–106

    PubMed  CAS  Google Scholar 

  196. Nakamura T, Tanabe Y (1974) In vitro metabolism of steroid hormones by chicken brain. Acta Endocrinol 75: 410–416

    PubMed  CAS  Google Scholar 

  197. Massa R, Cresti L, Martini L (1977) Metabolism of testosterone in the anterior pituitary gland and the central nervous system of the European starling (Stumus vulgaris). J Endocrinol 75: 347–354

    PubMed  CAS  Google Scholar 

  198. Massa R, Sharp PJ (1981) Conversion of testosterone to 5β-reduced metabolites in the neuroendocrine tissues of the maturing cockerel. J Endocrinol 88: 263–269

    PubMed  CAS  Google Scholar 

  199. Davies DT, Massa R, James R (1980) Role of testosterone and of its metabolites in regulating gonadotropin secretion in the Japanese quail. J Endocrinol 84: 211–222

    PubMed  CAS  Google Scholar 

  200. Levere RD, Kappas A, Granick S (1967) Stimulation of hemoglobin synthesis in chick blastoderm by certain 5β-androstane and 5β-pregnane steroids. Proc Natl Acad Sci USA 58: 985–990

    PubMed  CAS  Google Scholar 

  201. Holzbauer M (1976) Physiological aspects of steroids with anaesthetic properties. Med Biol 54: 227–242

    PubMed  CAS  Google Scholar 

  202. Kelly MJ, Moss RL, Dudley CA (1977) The effects of microelectrophoretically applied estrogen, Cortisol and acetylcholine on medial preoptic-septal unit activity throughout the estrus cycle of the female rat. Exp Brain Res 30: 53–64

    PubMed  CAS  Google Scholar 

  203. Nabekura U, Oomura Y, Minami T, Mizunolo U, Fukuda A (1986) Mechanisms of rapid effects of 17β-estradiol on medial amygdala neurons. Science 233: 228–229

    Google Scholar 

  204. Towle AC, Sze PY (1983) Steroid binding to synaptic plasma membrane: differential binding of glucocorticoids and gonadal steroids. J Steroid Biochem 18: 135–143

    PubMed  CAS  Google Scholar 

  205. Majewska MD, Harrison NL, Schwartz RD, Barker JL, Paul SM (1986) Steroid hormone metabolites are barbiturate-like modulators of the GABA receptor. Science 232: 1004–1007

    PubMed  CAS  Google Scholar 

  206. Jones MT, Hillhouse EW, Burden JL (1977) Dynamics and mechanisms of corticosteroid feedback at the hypothalamus and anterior pituitary gland. J Endocrinol 73: 405–417

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Schlinger, B.A., Callard, G.V. (1991). Brain-Steroid Interactions and the Control of Aggressiveness in Birds. In: Müller, E.E., MacLeod, R.M. (eds) Neuroendocrine Perspectives. Neuroendocrine Perspectives, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3146-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3146-2_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7813-9

  • Online ISBN: 978-1-4612-3146-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics