Skip to main content

Chemistry of Phosphorus Transformations in Soil

  • Chapter
Advances in Soil Science

Part of the book series: Advances in Soil Science ((SOIL,volume 16))

Abstract

Phosphorus (P) is essential for plants and animals because of its role in vital life processes, such as in photosynthesis in plants and energy transformations in all forms of life. It also has a significant role in sustaining and building up soil fertility, particularly under intensive systems of agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, L.K., and A.D. Robson. 1982. The role of vesicular-arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation. Aust. J. Agric. Res.33: 389–408

    Google Scholar 

  • Adams, J.F., and J.W. Odom. 1985. Effects of pH and phosphorus rates on soil-solution phosphorus and phosphorus availability. Soil Sci. 140: 202–205

    Google Scholar 

  • Adams, M.A., and L.T. Byrne. 1989. 31 P-NMR analysis of phosphorus compounds in extracts of surface soils from selected Karri (Eucalyptus diversicolor F. muell.) forests. Soil Biol Biochem. 21:523–528.

    Google Scholar 

  • Adams, W.A., S.N. Gafoor, and M.I. Karim. 1987. Composition and properties of poorly ordered minerals in Welsh soils. II. Phosphate adsorption and reactivity towards NaF solution. J. Soil Sci.38: 95–103

    CAS  Google Scholar 

  • Agboola, A.A., and O.J. Ayodele. 1983. An attempt to evaluate plant available phosphorus in Western Nigeria savannah soils under traditional fallow systems. In Proc. 3rd Int. Congr. on Phosphorus Compounds, (Brussels, Belgium). Institut Mondial du Phosphate, Casablanca, Morocco, pp. 261–267

    Google Scholar 

  • Al-Khateeb, I.K., M.J. Raihan, and S.R. Asker. 1986. Phase equilibria and kinetics of orthophosphate in some Iraqi soils. Soil Sci. 141: 31–37

    CAS  Google Scholar 

  • Alva, A.K., S. Larsen, and S.W. Bille. 1980. The influence of rhizosphere in rice crop on resin extractable phosphate in flooded soils at various levels of phosphate applications. Plant Soil56: 17–25

    CAS  Google Scholar 

  • Amarasiri, S.L., and S.R. Olsen. 1973. Liming as related to solubility of phosphorus and plant growth in an acid tropical soil. Soil Sci. Soc. Am. Proc.37: 716–721

    Google Scholar 

  • Anderegg, J.C., and D.V. Naylor. 1988. Phosphorus and pH relationships in an Andic soil with surface and incorporated organic amendment. Plant Soil107: 273 – 278.

    CAS  Google Scholar 

  • Anderson, G. 1980. Assessing organic phosphorus in soils. InF.E. Khasawneh, E.C. Sample, and E.J. Kamprath, (Eds.). The Role of Phosphorus in Agriculture. Soil Sci. Soc. Am., Madison, Wisconsin, pp. 411–431

    Google Scholar 

  • Anderson, G., and R.E. Malcolm. 1974. The nature of alkali-soluble soil organic phosphates. J. Soil Sci.25: 282–297

    CAS  Google Scholar 

  • Anderson, J.P.E., and K.H. Domsch. 1980. Quantities of bacteria and fungi in chloroform-fumigated soils. Soil Sci. 130: 211–216

    CAS  Google Scholar 

  • Aoba, T., and E.C. Moreno. 1985. Adsorption of phosphoserine onto hydroxyapatite and its inhibitory activity on crystal growth. J. Colloid Interface Sci.106: 110 – 121.

    CAS  Google Scholar 

  • Apthorp, J.N., M.J. Hedley, and R.W. Tillman. 1987. The effects of nitrogen fertilizer form on the plant availability of phosphate from soil, phosphate rock and monocalcium phosphate. Pert. Res.12: 269–284

    CAS  Google Scholar 

  • Araki, S., H. Hirai, and K. Kyuma. 1986. Phosphate absorption of red and/or yellow colored soil materials in relation to the characteristics of free oxides. Soil Sci. Plant Nutr.32: 609–616

    CAS  Google Scholar 

  • Atkinson, D.E. 1977. Cellular Energy Metabolism and its Regulation. Acad. Press, New York

    Google Scholar 

  • Atkinson, R.J., A.M. Posner, and J.P. Quirk. 1972. Kinetics of isotopic exchange of phosphate at the L-FeOOH-aqueous solution interface. J. Inorg. Nucl. Chem.34: 2201–2211

    CAS  Google Scholar 

  • Ayodele, O., and A.A. Agboola. 1981. Evaluation of phosphorus fixation capacity of tropical savannah soils of Western Nigeria. Soil Sci. Soc. Am. J.45: 462 – 464.

    CAS  Google Scholar 

  • Bache, B.W. 1963. Aluminum and iron phosphate studies relating to soils. I. Solution and hydrolysis of variscite and strengite. J. Soil Sci.14: 113–123

    Google Scholar 

  • Bache, B.W. 1964. Aluminum and iron phosphate studies relating to soils. II. Reactions between phosphate and hydrous oxides. J. Soil Sci.15: 110–116

    CAS  Google Scholar 

  • Bache, B.W., and C. Ireland. 1980. Desorption of phosphate from soils using anion exchange resins. J. Soil Sci.31: 297–306

    CAS  Google Scholar 

  • Bache, B.W., and E.G. Williams. 1971. A phosphate sorption index for soils. J. Soil Sci.22: 289–301

    CAS  Google Scholar 

  • Bangor, K.C., K.S. Yadav, and M.M. Mishra. 1985. Transformation of rock phosphate during composting and the effect of humic acid. Plant Soil85: 259–266

    Google Scholar 

  • Barea, J.M., F. El-Atrach, and R. Azcon. 1989. Mycorrhiza and phosphate interactions as affecting plant development, nitrogen fixation, nitrogen transfer and nitrogen uptake from soil in legume-grass mixtures by using a 15N dilution technique. Soil Biol Biochem. 21: 581–589

    Google Scholar 

  • Barekzai, A., and K. Mengel. 1985. Atterung von wasserlöslichem Dungerphosphat bei verschiedenen Bodentypen. Z. Pflanzenernaehr. Bodenkd.148: 365–378

    Google Scholar 

  • Barrow, N.J. 1974. Effect of previous additions of phosphate on phosphate adsorption by soils. Soil Sci. 118: 82–89

    CAS  Google Scholar 

  • Barrow, N.J. 1978. The description of phosphate adsorption curves. J. Soil Sci. 29: 447–462

    CAS  Google Scholar 

  • Barrow, N.J. 1979a. The description of desorption of phosphate from soil. J. Soil Sci.30: 259–270

    CAS  Google Scholar 

  • Barrow, N.J. 1979b. Three effects of temperature on the reactions between inorganic phosphate and soil. J. Soil Sci.30: 271–279

    CAS  Google Scholar 

  • Barrow, N.J. 1980. Evaluation and utilization of residual phosphorus in soils. InF.E. Khasawneh, E.C. Sample, and E.J. Kamprath (Eds.). The Role of Phosphorus in Agriculture. Soil Sci. Soc. Am., Madison, Wisconsin, pp. 333–359

    Google Scholar 

  • Barrow, N.J. 1983a. A mechanistic model for describing the sorption and desorption of phosphate by soil. J. Soil Sci.34: 733–750

    CAS  Google Scholar 

  • Barrow, N.J. 1983b. On the reversibility of phosphate sorption by soils. J. Soil Sci.34: 751–758

    CAS  Google Scholar 

  • Barrow, N.J. 1983c. A discussion of the methods for measuring the rate of reaction between soil and phosphate. Pert. Res.4: 51–61

    CAS  Google Scholar 

  • Barrow, N.J. 1984. Modelling the effects of pH on phosphate sorption by soils. J. Soil Sci.35: 283–297

    CAS  Google Scholar 

  • Barrow, N.J. 1985. Reaction of anions and cations with variable-charge soils. Adv. Agron.38: 183–230

    CAS  Google Scholar 

  • Barrow, N.J. 1987. Reactions with Variable-Charge soils. Martinus Nijhoff Pub., Dordrecht.

    Google Scholar 

  • Barrow, N.J. 1989. Relating chemical processes to management systems. Paper presented at the Symp. on Phosphorus Requirements for Sustainable Agriculture in Asia and Oceania, 6–10 March 1989. International Rice Research Institute, Los Banos, Laguna, Philippines.

    Google Scholar 

  • Barrow, N.J., J.W. Bowden, A.M. Posner, and J.P. Quirk. 1980. Describing the effects of electrolyte on adsorption of phosphate by a variable-charge surface. Aust. J. Soil Res.18: 395–404

    CAS  Google Scholar 

  • Barrow, N.J., and A.S. Ellis. 1986. Testing a mechanistic model. V. The points of zero salt effect for phosphate retention, for zinc retention and for acid/alkali titration of a soil. J. Soil Sci.37: 303–310

    CAS  Google Scholar 

  • Barrow, N.J., N. Malajczuk, and T.C. Shaw. 1977. A direct test of the ability of vesicular-arbuscular mycorrhiza to help plants take up fixed soil phosphate. New Phytol. 78: 269–276

    CAS  Google Scholar 

  • Barrow, N.J., and T.C. Shaw. 1975a. The slow reactions between soil and anions. 2. Effect of time and temperature on the decrease in phosphate concentration in the soil solution. Soil Sci. 119: 167–177

    CAS  Google Scholar 

  • Barrow, N.J., and T.C. Shaw. 1975b. The slow reactions between soil and anions. 3. The effects of time and temperature on the decrease in isotopically exchangeable phosphate. Soil Sci. 119: 190–197

    CAS  Google Scholar 

  • Barrow, N.J., and T.C. Shaw. 1979. Effects of ionic strength and nature of the cation on desorption of phosphate from soil. J. Soil Sci.30: 53–65

    CAS  Google Scholar 

  • Batsula, A.A., and S.M. Krivonosova. 1973. Phosphorus in the humic and fulvic acids of some Ukrainian soils. Soviet Soil Sci. 5: 347–350

    Google Scholar 

  • Bennoah, E.O., and D.K. Acquaye. 1989. Phosphate sorption characteristics of selected major Ghanian soils. Soil Sci. 148: 114–123

    Google Scholar 

  • Beri, V., and O.P. Meelu. 1980. Add nitrogen through green manure. Prog. Farming16: 8–9

    Google Scholar 

  • Bethlenfalvay, G.J., and R.S. Pacovsky. 1983. Light effects in mycorrhizal soybeans. Plant Physiol. 73: 969–972

    PubMed  CAS  Google Scholar 

  • Bhujbal, B.M., and K.B. Mistry. 1985. Studies on the dissolution of major Indian phosphate rocks in an acid soil. J. Indian Soc. Soil Sci.33: 568–573

    CAS  Google Scholar 

  • Bishop, C.L. 1979. Effects of light intensity on vesicular-arbuscular mycorrhizal infection in Zea mays. J. Colorado-Wyoming Acad. Sci. 11: 28.

    Google Scholar 

  • Blair, G.J., and O.W. Boland. 1978. The release of phosphorus from plant material added to soil. Aust. J. Soil Res.16: 101–111

    CAS  Google Scholar 

  • Blanchar, R.W., and G.K. Stearman. 1984. Ion products and solid-phase activity to describe phosphate sorption by soils. Soil Sci. Soc. Am. J.48: 1253–1258

    CAS  Google Scholar 

  • Blanchar, R.W., and G.K. Stearman. 1985. Prediction of phosphate sorption in soils from regular solid solution theory. Soil Sci. Soc. Am. J.49: 578–583

    CAS  Google Scholar 

  • Bloom, P.R. 1981. Phosphorus adsorption by an aluminum-peat complex. Soil Sci. Soc. Am. J.45: 267–272

    CAS  Google Scholar 

  • Bolan, N.S., and N.J. Barrow. 1984. Modelling the effect of adsorption of phosphate and other anions on the surface charge of variable-charge oxides. J. Soil Sci.35: 273–281

    CAS  Google Scholar 

  • Bolan, N.S., N.J. Barrow, and A.M. Posner. 1985. Describing the effect of time on sorption of phosphate by iron and aluminum hydroxides. J. Soil Sci.36: 187–197

    CAS  Google Scholar 

  • Bolan, N.S., and M.J. Hedley. 1989. Dissolution of phosphate rocks in soils. 1. Evaluation of extraction methods for the measurement of phosphate rock dissolution. Fert. Res.19: 65–75

    CAS  Google Scholar 

  • Bolan, N.S., M.J. Hedley, J.K. Syers, and R.W. Tillman. 1987a. Single superphosphate- reactive phosphate rock mixtures. 1. Factors affecting chemical composition. Fert. Res.13: 223–229

    CAS  Google Scholar 

  • Bolan, N.S., A.D. Robson, and N.J. Barrow. 1983. Plant and soil factors including mycorrhizal infection causing sigmoidal response of plants to applied phosphorus. Plant Soil73: 187–201

    CAS  Google Scholar 

  • Bolan, N.S., A.D. Robson, and N.J. Barrow. 1987b. Effects of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant Soil99: 401–410

    CAS  Google Scholar 

  • Bolan, N.S., A.D. Robson, N.J. Barrow, and L.A.G. Aylmore. 1984. Specific activity of phosphorus in mycorrhizal and non-mycorrhizal plants in relation to the availability of phosphorus to plants. Soil Biol. Biochem.16: 299–304

    CAS  Google Scholar 

  • Bolan, N.S., J.K. Syers, and R.W. Tillman. 1986. Ionic strength effects on surface charge and adsorption of phosphate and sulfate by soils. J. Soil Sci.37: 379–388

    CAS  Google Scholar 

  • Bolan, N.S., J.K. Syers, and R.W. Tillman. 1988. Effect of pH on adsorption of phosphate and potassium in batch and in column experiments. Aust. J. Soil Res.26: 165–170

    CAS  Google Scholar 

  • Bolland, M.D.A., and N.J. Barrow. 1988. Effect of level of application on the relative effectiveness of rock phosphate. Fert. Res.15: 181–192

    CAS  Google Scholar 

  • Bolland, M.D.A., and J.W. Bowden. 1982. Long-term availability of phosphorus from calcined rock phosphate compared with superphosphate. Aust. J. Agric. Res.33: 1061–1071

    CAS  Google Scholar 

  • Bolland, M.D.A., and J.W. Bowden. 1984. The initial and residual value for subterranean clover of phosphorus from Candallite rock phosphates, apatite rock phosphates and superphosphate. Fert. Res.5: 295–307

    CAS  Google Scholar 

  • Bolland, M.D.A., J.W. Bowden, M.F. D’Antuono, and R.J. Gilkes. 1984. The current and residual value of superphosphate, Christmas Island C-grade ore, and Calci-phos as fertilizers for a subterranean clover pasture. Fert. Res.5: 335–354

    CAS  Google Scholar 

  • Bolland, M.D.A., and R.J. Gilkes. 1989. Reactive rock phosphate fertilizers and soil testing for phosphorus: The effect of particle size of the rock phosphate. Fert. Res.21: 75–93

    Google Scholar 

  • Bolland, M.D.A., A.J. Wheatherley, R.J. Gilkes, and J.W. Bowden. 1986. Granular reactive apatite rock phosphate is not an effective phosphorus fertilizer in the short term on lateritic soils in south-western Australia. Aust. J. Exp. Agric.26: 217–225

    Google Scholar 

  • Borggaard, O.K. 1983. The influence of iron oxides on phosphate adsorption by soil. J. Soil Sci.34: 333–341

    CAS  Google Scholar 

  • Bowden, J.W., S. Nagarajah, N.J. Barrow, A.M. Posner, and J.P. Quirk. 1980. Describing the adsorption of phosphate, citrate, and selenite on a variable-charge mineral surface. Aust. J. Soil Res.18: 49–60

    CAS  Google Scholar 

  • Bowden, J.W., A.M. Posner, and J.P., Quirk. 1977. Ionic adsorption on variable- charge mineral surfaces. Theoretical charge development and titration curves. Aust. J. Soil Res.15: 121–136

    CAS  Google Scholar 

  • Bowman, R.A. 1989. A sequential extraction procedure with concentrated sulfuric acid and dilute base for soil organic phosphorus. Soil Sci. Soc. Am. J.53: 362–366

    CAS  Google Scholar 

  • Bowman, R.A., and C.V., Cole. 1978a. An exploratory method for fractionation of organic phosphorus from grassland soils. Soil Sci. 125: 95–101

    CAS  Google Scholar 

  • Bowman, R.A., and C.V. Cole. 1978b. Transformations of organic phosphorus substrates in soils as evaluated by NaHC03 extraction. Soil Sci. 125: 49–54

    CAS  Google Scholar 

  • Bowman, R.A., and S.R. Olsen. 1985. Assessment of phosphate-buffering capacity. 2. Greenhouse methods. Soil Sci. 140: 387–392

    CAS  Google Scholar 

  • Bradley, J., I. Vimpany, and P.J. Nicholls. 1984. Effects of waterlogging and subsequent drainage of a pasture soil on phosphate sorption, extractable phosphate, and ox- alate-extractable iron. Aust. J. Soil Res.22: 455–461

    CAS  Google Scholar 

  • Braithwaite, A.C. 1987. Processing aspects of production of partially acidulated phosphate rock fertilizers using phosphoric acid. Fert. Res.13: 87–96

    CAS  Google Scholar 

  • Braithwaite, A.C., A.C. Eaton, and P.S. Groom. 1989. Some factors associated with the use of the extractants 2% citric acid and 2% formic acid as estimators of available phosphorus in fertilizer products. Fert. Res.19: 175–181

    CAS  Google Scholar 

  • Brandon, A.M., and D.S. Mikkelsen. 1979. Phosphorus transformations in alternately flooded California soils. I. Cause of plant phosphorus deficiency in rice rotation crops and correctional methods. Soil Sci. Soc. Am. J.43: 989–994

    CAS  Google Scholar 

  • Brannon, C.A., and L.E. Sommers. 1985a. Preparation and characterization of model humic polymers containing organic phosphorus. Soil Biol. Biochem.17: 213–219.

    CAS  Google Scholar 

  • Brannon, C.A., and L.E. Sommers. 1985b. Stability and mineralization of organic phosphorus incorporated into model humic polymers. Soil Biol. Biochem.17: 221–227.

    CAS  Google Scholar 

  • Brechet, C., and F. Le Tacon. 1984. Response of endomycorrhizal and nonmycorrhizal plants of Acer pseudoplatanusto different levels of soluble and nonsoluble phosphorus. Eur. J. For. Pathol.14: 68–77.

    CAS  Google Scholar 

  • Broeshart, H., E. Haunold, and M. Fried. 1965. The effect of water conditions and oxidation-reduction status of rice soils on the availability of soil and fertilizer phosphorus. Plant Soil23: 305–313.

    CAS  Google Scholar 

  • Brookes, P.C., D.S. Powlson, and D.S. Jenkinson. 1982. Measurement of microbial biomass phosphorus in soil. Soil Biol. Biochem14: 319–329.

    CAS  Google Scholar 

  • Brookes, P.C., D.S. Powlson, and D.S. Jenkinson. 1984. Phosphorus in the soil microbial biomass. Soil Biol. Biochem.16: 169–175.

    CAS  Google Scholar 

  • Brookes, P.C., K.R. Tate, and D.S. Jenkinson. 1983. The adenylate-energy charge of the soil microbial biomass. Soil Biol. Biochem.15: 9–16.

    Google Scholar 

  • Buchter, B., B. Davidoff, M.C. Amacher, C., Hinz, I.K. Iskandar, and H.M. Selim. 1989. Correlation of Freundlich K d and n retention parameters with soils and elements. Soil Sci.148: 370–379.

    CAS  Google Scholar 

  • Burnham, C.P., and D. Lopez-Hernandez. 1982. Phosphate retention in different soil taxonomy. Soil Sci. 134: 376–380.

    CAS  Google Scholar 

  • Chang, S.C. 1978. Evaluation of the fertility of rice soils. In Soils and Rice. International Rice Research Institute, Los Banos, Laguna, Philippines, pp. 521–541.

    Google Scholar 

  • Chang, S.C., and M.L. Jackson. 1957. Fractionation of soil phosphorus. Soil Sci. 84: 133–144.

    CAS  Google Scholar 

  • Chang, S.C., and K. Maleewan. 1972. Correlation between availability indices of soil phosphorus determined on aerobic and anaerobic soil samples. In Compilation of Reports on Rice Fertilization Research. Presented at the 4th meeting of the Advisory Committee on rice fertilization, 15–16 May 1972, Tennessee Valley Authority and Rice Department, Ministry of Agriculture, Bangkok, Thailand.

    Google Scholar 

  • Chater, M., and G.E.G. Mattingly. 1980. Changes in organic phosphorus contents of soil from long-continued experiments at Rothamsted and Saxmundham. Rothamsted Experiment Station Report for 1979, Part 2, pp. 41–61

    Google Scholar 

  • Chatterjee, S.C., A.N. Datta, and S.K. Ghosh. 1983. Evaluation of low-grade phosphate rock deposits in Indian context. Fert. News.28: 27–32

    CAS  Google Scholar 

  • Chauhan, B.S., J.W.B. Stewart, and E.A. Paul. 1979. Effect of carbon additions on soil labile inorganic, organic and microbially held phosphate. Can. J. Soil Sci.59: 387–396

    CAS  Google Scholar 

  • Chauhan, B.S., J.W.B. Stewart, and E.A. Paul. 1981. Effect of labile inorganic phosphate status and organic carbon additions on the microbial uptake of phosphorus in soils. Can. J. Soil Sci.61: 373–385

    CAS  Google Scholar 

  • Chaverri, J.G., and C.A. Black. 1966. Theory of the solubility of phosphate rock. Iowa State J. Sci.41: 77–95

    CAS  Google Scholar 

  • Chhonkar, P.K., and J.C. Tarafdar. 1981. Characteristics and location of phosphatases in soil-plant system. J. Indian Soc. Soil Sci.29: 215–219

    CAS  Google Scholar 

  • Chien, S.H. 1977a. Dissolution rates of phosphate rocks. Soil Sci. Soc. Am. J.41: 656–657

    CAS  Google Scholar 

  • Chien, S.H. 1977b. Thermodynamic considerations on the solubility of phosphate rock. Soil Sci. 123: 117–121

    CAS  Google Scholar 

  • Chien, S.H. 1979a. Dissolution of phosphate rocks in soils and solutions. Special Publication IFDC-S1. International Fertilizer Development Center, Muscle Shoals, Alabama.

    Google Scholar 

  • Chien, S.H. 1979b. Dissolution of phosphate rocks in acid soils as influenced by nitrogen and potassium fertilizers. Soil Sci. 127: 371–376.

    CAS  Google Scholar 

  • Chien, S.H., F. Adams, F.E. Khasawneh, and J. Henao. 1987b. Effects of combinations of triple superphosphate and a reactive phosphate rock on yield and phosphate uptake by corn. Soil Sci. Soc. Am. J.51: 1656–1658

    Google Scholar 

  • Chien, S.H., and C.A. Black. 1976. Free energy of formation of carbonate apatites in some phosphate rock. Soil Sci. Soc. Am. J.40: 234–239.

    CAS  Google Scholar 

  • Chien, S.H., and W.R. Clayton. 1980. Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci. Soc. Am. J.44: 265–268.

    CAS  Google Scholar 

  • Chien, S.H., W.R. Clayton, and G.H. McClellan. 1980a. Kinetics of dissolution of phosphate rocks in soil. Soil Sci. Soc. Am. J.44: 260–264

    CAS  Google Scholar 

  • Chien, S.H., and L.L. Hammond. 1978a. Comparison of various laboratory methods for predicting the agronomic potential of phosphate rocks for direct application. Soil Sci. Soc. Am. J.42: 935–939

    CAS  Google Scholar 

  • Chien, S.H., and L.L. Hammond. 1978b. A simple chemical method for evaluating the agronomic potential of granulated phosphate rock. Soil Sci. Soc. Am. J.42: 615–617

    CAS  Google Scholar 

  • Chien, S.H., and L.L. Hammond. 1989. Agronomic effectiveness of partially acidulated phosphate rock as influenced by soil phosphorus-fixing capacity. Plant Soil120: 159–164

    Google Scholar 

  • Chien, S.H., L.L. Hammond, and L.A. Leon. 1987a. Long-term reactions of phosphate rocks with an Oxisol in Colombia. Soil Sci. 144: 257–265

    CAS  Google Scholar 

  • Chien, S.H., L.A. Leon, and H.R. Tejeda. 1980b. Dissolution of North Carolina phosphate rock in acid Colombian soils as related to soil properties. Soil Sci. Soc. Am. J. 44: 1267–1271

    CAS  Google Scholar 

  • Chien, S.H., N.K. Savant, and U. Mokwunye. 1982. Effect of temperature on phosphate sorption and desorption in two acid soils. Soil Sci. 133: 160–166

    CAS  Google Scholar 

  • Cholitkul, W., and E.H. Tyner. 1971. Inorganic phosphorus fractions and their relation to some chemical indices of phosphate availability for some lowland rice soils of Thailand. In Proc. Int. Symp. on Soil Fertility Evaluation. Indian Soc. Soil Sci., New Delhi, pp. 7–20

    Google Scholar 

  • Cole, C.V., and R.D. Heil. 1981. Phosphorus effects on terrestrial nitrogen cycling. Ecol. Bull.33: 363–374

    CAS  Google Scholar 

  • Cole, C.V., G.S. Innis, and J.W.B. Stewart. 1977. Simulation of phosphorus cycling in semiarid grasslands. Ecology58: 1–15

    CAS  Google Scholar 

  • Cole, C.V., and R.L. Sanford, Jr. 1989. Biological aspects of the phosphorus cycle. Paper presented at the Symp. on Phosphorus Requirements for Sustainable Agriculture in Asia and Oceania, 6–10 March 1989. International Rice Research Institute, Los Banos, Laguna, Philippines

    Google Scholar 

  • Condron, L.M., E. Frossard, H. Tiessen, R.H. Newman, and J.W.B. Stewart. 1990. Chemical nature of organic phosphorus in cultivated and uncultivated soils under different environmental conditions. J. Soil Sci.41: 41–50

    CAS  Google Scholar 

  • Condron, L.M., and K.M. Goh. 1989. Effects of long-term phosphatic fertilizer applications on amounts and forms of phosphorus in soils under irrigated pasture in New Zealand. J. Soil Sci.40: 383–395

    CAS  Google Scholar 

  • Condron, L.M., K.M. Goh, and R. H. Newman. 1985. Nature and distribution of soil phosphorus as revealed by a sequential extraction method followed by 31P nuclear magnetic resonance analysis. J. Soil Sci.36: 199–207

    CAS  Google Scholar 

  • Cook, R.L. 1935. Divergent influence of degree of base saturation of soils on the availability of native, soluble, and rock phosphates. Am. Soc. Agron.27: 297–311

    CAS  Google Scholar 

  • Cooke, G.W. 1956. The value of rock phosphate for direct application. Emp. J. Exp. Agric.24: 295–306

    Google Scholar 

  • Dalai, R.C. 1977. Soil organic phosphorus. Adv. Agron.29: 83–117

    Google Scholar 

  • Dalai, R.C. 1985. Comparative prediction of yield response and phosphorus uptake from soil using anion- and cation-anion exchange resins. Soil Sci. 139: 227–231

    Google Scholar 

  • Dash, R.N., S.K. Mohanty, and S. Patnaik. 1981a. Chemical composition and reactivity of some Indian rock phosphates. J. Indian Sci. Soil Sci.29: 559–562

    CAS  Google Scholar 

  • Dash, R.N., S.K. Mohanty, and S. Patnaik. 1981b. Efficiency of HC1- and H2S04- acidulated rock phosphates for a rice based cropping system. Fert. Res. 2: 109–118

    CAS  Google Scholar 

  • Dash, R.N., S.K. Mohanty, and S. Patnaik. 1982a. Comparative study of reactivity and agronomic effectiveness of Indian, U.S., African, and Middle East rock phosphates for growing rice. Fert. Res.3: 177–189

    Google Scholar 

  • Dash, R.N., S.K. Mohanty, and S. Patnaik. 1982b. Note on the effects of HCl- and H2S04-acidulated rock phosphates in relation to the time of application to rice. Indian J. agric. Sci.52: 252–254

    Google Scholar 

  • Datta, N.R., and N.P. Datta. 1963. Response to phosphate in rice and wheat in different soils. J. Indian Soc. Soil Sci.11: 117–128

    CAS  Google Scholar 

  • Debnath, N.C., S.K. Banerjee, and S.K. Mandal. 1974. Influence of humic and fulvic acids on the availability and inorganic transformation of phosphorus in soil. J. Indian Chem. Soc.51: 811–813

    CAS  Google Scholar 

  • Debnath, N.C., and R.K. Basak. 1986. Effect of rock phosphate and basic slag on available phosphorus in acid soils in relation to soil characteristics, seasons, and moisture regimes. J. Indian Soc. Soil Sci.34: 464–470

    Google Scholar 

  • De Datta, S.K. 1978. Fertilizer management for efficient use in wetland rice soils. In Soils and Rice. International Rice Research Institute, Los Banos, Laguna, Philippines, pp. 671–701

    Google Scholar 

  • De Datta, S.K. 1981. Principles and Practices of Rice Production. John Wiley & Sons, New York

    Google Scholar 

  • De Datta, S.K. 1983. Phosphorus requirements and phosphorus fertilization of lowland rice. In Proc. 3rd Int. Congr. on Phosphorus Compounds (Brussels, Belgium). Institut Mondial du Phosphate, Casablanca, Morocco, pp. 401–421

    Google Scholar 

  • De Datta, S.K., T.K. Biswas, and C. Charoenchamratcheep. 1989. Phosphorus requirements and management for lowland rice. Paper presented at the Symp. on Phosphorus Requirements for Sustainable Agriculture in Asia and Oceania, 6–10 March 1989, International Rice Research Institute, Los Banos, Laguna, Philippines

    Google Scholar 

  • De Datta, S.K., and K.A. Gomez. 1982. Changes in phosphorus and potassium responses in wetland rice soils in South and Southeast Asia. InE. Pushparajah and H.A.H. Sharifuddin (Eds.). Phosphorus and Potassium in the Tropics. The Malaysian Soc. Soil Sci., Kuala Lumpur, pp. 127–146.

    Google Scholar 

  • De Datta, S.K., J.C. Moomaw, V.V. Racho, and G.V. Simsiman. 1966. Phosphorus supplying power of lowland rice soils. Soil Sci. Soc. Am. Proc.30: 613–617

    CAS  Google Scholar 

  • Diamond, R.B. 1985. Availability and management of phosphorus in wetland soils in relation to soil characteristics. In Wetland Soils: Characterization, Classification, and Utilization. International Rice Research Institute, Los Banos, Laguna, Philippines, pp. 269–283

    Google Scholar 

  • Dodd, J.C., C.C. Burton, R.G. Burns, and P. Jeffries. 1987. Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular- arbuscular mycorrhizal fungi. New Phytol. 107: 163–172.

    CAS  Google Scholar 

  • Dolui, A.K., and S.K. Gangyopadhyay. 1984. Fixation of phosphorus in relation to properties of some red and lateritic soils of West Bengal. Indian J. Agric. Chem.17: 177–182.

    Google Scholar 

  • Earl, K.D., J.K. Syers, and J.R. McLaughlin. 1979. Origin of the effects of citrate, tartarate, and acetate on phosphate sorption by soils and synthetic gels. Soil Sci. Soc. Am. J.43: 674–678

    CAS  Google Scholar 

  • Eivazi, F., and C.C. Weir. 1989. Phosphorus and mycorrhizal interaction on uptake of phosphorus and trace elements by maize. Fert. Res.21: 19–22

    Google Scholar 

  • Elliot, E.T., K. Horton, J.C. Moore, D.C. Coleman, and C.V. Cole. 1984. Mineralization dynamics in fallow dryland wheat plots, Colorado. Plant Soil76: 149–155

    Google Scholar 

  • Emsley, J., and S. Niazi. 1983. The analysis of soil phosphorus by ICP and 31P-NMR spectroscopy. Phosphorus and Sulfur16: 303–312

    CAS  Google Scholar 

  • Enfield, C.G., C.C. Harlin, Jr., and B.E. Bledsoe. 1976. Comparison of five kinetic methods for orthophosphate reactions in mineral soils. Soil Sci. Soc. Am. J.40: 243–249

    CAS  Google Scholar 

  • Engelstad, O.P., A. Jugsujinda, and S. K. De Datta. 1974. Response by flooded rice to phosphate rocks varying in citrate solubility. Soil Sci. Soc. Am. Proc.38: 524–529

    CAS  Google Scholar 

  • Engelstad, O.P., and G.L. Terman. 1980. Agronomic effectiveness of phosphate fertilizers. InF.E. Khasawneh, E.C. Sample, and E.J. Kamprath (Eds.). The Role of Phosphorus in Agriculture. Soil Sci Soc. Am., Madison, Wisconsin, pp. 311–332

    Google Scholar 

  • Evans, A. Jr. 1985. The adsorption of inorganic phosphate by a sandy soil as influenced by dissolved organic compounds. Soil Sci. 140: 251–255

    CAS  Google Scholar 

  • Ferris, R.S. 1984. Effects of microwave oven treatment on microorganisms in soil. Phytopathol. 74: 121–126

    Google Scholar 

  • Fischer, W.R. 1983. Theoretische Betrachtungen zur reduktiven Ausflosung von Eisen (III)-oxiden. Z. Pflanzenernaehr. Bodenkd.146: 611–622

    CAS  Google Scholar 

  • Fixen, P.E., and A.E. Ludwick. 1982a. Residual available phosphorus in near neutral and alkaline soils. I. Solubility and capacity relationships. Soil Sci. Soc. Am. J.46: 332–334

    CAS  Google Scholar 

  • Fixen, P.E., and A.E. Ludwick. 1982b. Residual available phosphorus in near-neutral and alkaline soils. II. Persistence and quantitative estimation. Soil Sci. Soc. Am. J.46: 335–338

    CAS  Google Scholar 

  • Fixen, P.E., A.E. Ludwick, and S.R. Olsen. 1983. Phosphorus and potassium fertilization of irrigated alfalfa on calcareous soils. Soil phosphorus solubility relationships. Soil Sci. Soc. Am. J.47: 112–117

    CAS  Google Scholar 

  • Fox, R.L. 1974. Examples of anion and cation adsorption by soils of tropical America. Tropic. Agric.51: 200–210

    Google Scholar 

  • Fox, R. L., and E.J. Kamprath. 1970. Phosphate sorption isotherms for evaluating the phosphate requirements of soils. Soil Sci. Soc. Am. Proc.34: 902–907

    CAS  Google Scholar 

  • Fox, R.L., and B.T. Kang. 1978. Influence of phosphorus fertilizer placement and fertilization rate on maize nutrition. Soil Sci. 125: 34–40

    CAS  Google Scholar 

  • Freeman, J.S., and D.L. Rowell. 1981. The adsorption and precipitation of phosphate onto calcite. J. Soil Sci.32: 75–84

    CAS  Google Scholar 

  • Friesen, D.K., and GJ. Blair. 1988. A dual radiotracer study of transformations of organic, inorganic and plant residue phosphorus in soil in presence and absence of plants. Aust. J. Soil Res.26: 355–366

    Google Scholar 

  • Friesen, D.K., A.S.R. Juo, and M.H. Miller. 1980. Liming and lime-phosphorus-zinc interactions in two Nigerian Ultisols. 1. Interactions in the soil. Soil Sci. Soc. Am. J.44: 1221–1226

    CAS  Google Scholar 

  • Garbouchev, I.P. 1981. The manufacture and agronomic efficiency of a partially acidulated phosphate rock fertilizer. Soil Sci. Soc. Am. J.45: 970–974

    CAS  Google Scholar 

  • Gebhardt, H., and N.T. Coleman. 1974. Anion adsorption by allophanic tropical soils. III. Phosphate adsorption. Soil Sci. Soc. Am. Proc.38: 263–266

    CAS  Google Scholar 

  • Gianinazzi-Pearson, V., J. Fardeau, S. Asimi, and S. Gianinazzi. 1981. Source of additional phosphorus absorbed from soil by vesicular-arbuscular mycorrhizal soybeans. Physiol. Veg.19: 33–43

    Google Scholar 

  • Gil-Sotres, F., W. Zech, and H.G. Alt. 1990. Characterization of phosphorus fractions in surface horizons of soil from Galicia (N.W. Spain) by 31P-NMR spectroscopy. Soil Biol. Biochem.22: 75–79

    CAS  Google Scholar 

  • Goldberg, S., and G. Sposito. 1984a. A chemical model of phosphate adsorption by soils. I. Reference oxide minerals. Soil Sci. Soc. Am. J.48: 772–778

    CAS  Google Scholar 

  • Goldberg, S., and G. Sposito. 1984b. A chemical model of phosphate adsorption by soils. II. Noncalcareous soils. Soil Sci. Soc. Am. J.48: 779–783

    CAS  Google Scholar 

  • Goswami, N.N., and N.K. Banerjee. 1978. Phosphorus, potassium, and other macroelements. In Soils and Rice. International Rice Research Institute, Los Banos, Laguna, Philippines, pp. 561–580

    Google Scholar 

  • Graham, E.R. 1955. Availability of natural phosphates according to energy changes. Soil Sci. Soc. Am. Proc.19: 26–29

    CAS  Google Scholar 

  • Greenland, D J., and S.K. De Datta. 1985. Constraints to rice production and wetland soil characteristics. In Wetland Soils: Characterization, Classification, and Utilization. International Rice Research Institute, Los Banos, Laguna, Philippines, pp. 23–36

    Google Scholar 

  • Greenland, D.J., J.M. Oades, and T.W. Sherwin. 1968. Electron-microscope observations of iron oxides in some red soils. J. Soil Sci.19: 123–126

    CAS  Google Scholar 

  • Gregg, P.E.H., J.K. Syers, and A.D. MacKay. 1981. Agronomic effectiveness of reactive phosphate rocks in hill country pastures. In Proc. Tech. Workshop on Potential of Phosphate Rock as a Direct Application Fertilizer in New Zealand. Occasional Report No.3. Massey University, Palmerston North, New Zealand, pp. 4–10

    Google Scholar 

  • Gregory, P.J. 1988. Growth and functioning of plant roots. InA. Wild (Ed.). Russell’s Soil Conditions and Plant Growth. 11th Ed. Longman, Harlow, England, pp. 155–163

    Google Scholar 

  • Grindel, N.M., and N.G. Zyrin. 1965. Method of determination and dynamics of organic phosphate compounds in the plow horizon of slightly cultivated sod- podzolic soils. Soviet Soil Sci. 12: 1391–1401

    Google Scholar 

  • Grinsted, M.J., M.J. Hedley, R.E. White, and P.H. Nye. 1982. Plant-induced changes in the rhizosphere of rape (Brassica napusvar. Emerald) seedlings. I. pH change and the increase in phosphorus concentration in the soil solution. New Phytol. 91: 19–29

    CAS  Google Scholar 

  • Gunary, D. 1970. A new adsorption isotherm for phosphate in soil. J. Soil Sci.21: 72–77

    CAS  Google Scholar 

  • Gunjigake, N., and K. Wada. 1981. Effects of phosphorus concentration and pH on phosphate retention by active aluminum and iron of Ando soils. Soil Sci. 132: 347–352

    CAS  Google Scholar 

  • Hagin, J. 1985. Partially Acidulated Phosphate Rock. A Review. Water and Soils Research Centre, Technion-Israel Institute of Technology

    Google Scholar 

  • Halm, B.J., J.W.B. Stewart, and R.L. Halstead. 1972. The phosphorus cycling in a natural grassland eco-system. In: Isotopes and Radiation in Soil Plant Relationships Including Forestry. IAEA, Vienna, pp. 571–586

    Google Scholar 

  • Hammond, L.L., S.H. Chien, and A.U. Mokwunye. 1986. Agronomic value of un- acidulated and partially acidulated phosphate rocks indigenous to the tropics. Adv. Agron.40: 89–140

    CAS  Google Scholar 

  • Hammond, L.L., S.H. Chien, and J.R. Polo. 1980. Phosphorus availability from partial acidulation of two phosphate rocks. Fert. Res.1: 37–49

    CAS  Google Scholar 

  • Hammond, L.L., S.H. Chien, A.H. Roy, and A.U. Mokwunye. 1989. Solubility and agronomic effectiveness of partially acidulated phosphate rocks as influenced by their iron and aluminum oxide content. Fert. Res.19: 93–98

    CAS  Google Scholar 

  • Hammond, L.L., and L.A. Leon. 1983. Agronomic effectiveness of natural and altered phosphate rocks from Latin America. In Proc. 3rd Int. Congr. on Phosphorus Compounds, (Brussels, Belgium). Institut Mondial du Phosphate, Casablanca, Morocco, pp. 503–518

    Google Scholar 

  • Harrison, A.F. 1982a. 32P-method to compare rates of mineralization of labile organic phosphorus in woodland soils. Soil Biol. Biochem. 14:337–341

    CAS  Google Scholar 

  • Harrison, A.F. 1982b. Labile organic phosphorus mineralization in relationship to soil properties. Soil Biol Biochem. 14: 343–351

    CAS  Google Scholar 

  • Harrison, A.F. 1987. Soil Organic Phosphorus. A review of World Literature. C.A.B. International Wallingford, United Kingdom

    Google Scholar 

  • Harrison, R.B. and F. Adams. 1987. Solubility characteristics of residual phosphate in a fertilized and limed Ultisol. Soil Sci. Soc. Am. J.51: 963–969

    CAS  Google Scholar 

  • Harter, R.D. 1969. Phosphorus adsorption sites in soils. Soil Sci. Soc. Am. Proc.33: 630–632

    CAS  Google Scholar 

  • Harter, R.D. 1984. Curve-fit errors in Langmuir adsorption maxima. Soil Sci. Soc. Am. J.48: 749–752

    Google Scholar 

  • Havlin, J.L., and D.G. Westfall. 1984. Soil test phosphorus and solubility relationships in calcareous soils. Soil Sci. Soc. Am. J.48: 327–330

    CAS  Google Scholar 

  • Hawkes, G.E., D.S. Powlson, E.W. Randall, and K.R. Tate. 1984. A 31P-nuclear magnetic resonance study of the phosphorus species in soils from long continued field experiments. J. Soil Sci.35: 35–45

    CAS  Google Scholar 

  • Haynes, R.J. 1982. Effects of liming on phosphate availability in acid soils. A critical review. Plant Soil68: 289–308

    CAS  Google Scholar 

  • Haynes, R.J. 1983. Effect of lime and phosphate applications on the adsorption of phosphate, sulfate, and molybdate by a Spodosol. Soil Sci. 135: 221–227

    CAS  Google Scholar 

  • Haynes, R.J. 1984. Lime and phosphate in the soil-plant system. Adv. Agron.37: 249–315

    CAS  Google Scholar 

  • Haynes, R.J., and T.E. Ludecke. 1981. Effect of lime and phosphorus applications on concentrations of available nutrients and on P, Al and Mn uptake by two pasture legumes in an acid soil. Plant Soil62: 117–128

    CAS  Google Scholar 

  • Hedley, M.J., P.H. Nye, and R.E. White. 1982a. Plant-induced changes in the rhizo- sphere of rape (Brassica napusvar. Emerald) seedlings. II. Origin of the pH change. New Phytol91: 31–44

    CAS  Google Scholar 

  • Hedley, M.J., and J.W.B. Stewart. 1982. Method to measure microbial phosphate in soils. Soil Biol Biochem. 14: 377–385

    CAS  Google Scholar 

  • Hedley, M.J., J.W.B. Stewart, and B.S. Chauhan. 1982b. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J.46: 970–976

    CAS  Google Scholar 

  • Hedley, M.J., R.E. White, and P.H. Nye. 1982c. Plant-induced changes in the rhizo- sphere of rape (Brassica napusvar. Emerald) seedlings. III. Changes in L value, soil phosphate fractions and phosphatase activity. New Phytol91: 45–56

    CAS  Google Scholar 

  • Helal, H.M., and D. Sauerbeck. 1984. Influence of plant roots on C and P metabolism in soil. Plant Soil76: 175–182

    CAS  Google Scholar 

  • Heliums, D.T., S.H. Chien, and J.T. Touchton. 1989. Potential agronomic value of calcium in some phosphate rocks from south America and west Africa. Soil Sci. Soc. Am. J.53: 459–462

    Google Scholar 

  • Hingston, F.J. 1982. A review of anion adsorption. InM.A. Anderson and A.J. Rubin (Eds.). Adsorption of Inorganics at Solid-Liquid Surfaces. Ann Arbor Sci. Pub., Inc., Ann Arbor, Michigan, pp. 51–90

    Google Scholar 

  • Hirata, H., M. Toshihisa, and H. Koiwa. 1988. Response of chickpea grown on Ando-soil to vesicular-arbuscular mycorrhizal infection in relation to the level of phosphorus application. Soil Sci. Plant Nutr.34: 441–449

    Google Scholar 

  • Holford, I.C.R. 1979. Evaluation of soil phosphate-buffering indices. Aust. J. Soil Res.17: 495–504

    CAS  Google Scholar 

  • Holford, I.C.R. 1988. Buffering of phosphate in the soil solution during growth of ryegrass compared with buffering by sorption. Plant Soil111: 3 – 9.

    CAS  Google Scholar 

  • Holford, I.C.R., and W.H. Patrick, Jr. 1979. Effects of reduction and pH changes on phosphate sorption and mobility in an acid soil. Soil Sci. Soc. Am. J.43: 292–297

    CAS  Google Scholar 

  • Hong, J.K., and I. Yamane. 1980a. Inositol phosphate and inositol in humic and fulvic acid fractions extracted by three methods. Soil Sci. Plant Nutr.26: 491–496

    CAS  Google Scholar 

  • Hong, J.K., and I. Yamane. 1980b. Examination of the conventional method and a proposal for a new method of determining inositol phosphate in the humic acid fraction. Soil Sci. Plant Nutr.26: 497–505

    CAS  Google Scholar 

  • Hong, J.K., and I. Yamane. 1981. Distribution of inositol phosphate in the molecular size fractions of humic and fulvic acid fractions. Soil Sci. Plant Nutr.27: 295–303

    CAS  Google Scholar 

  • Howe, D.O., and E.R. Graham. 1957. Salt concentration: A factor in the availability of phosphorus from rock phosphate as revealed by the growth and composition of alfalfa. Soil Sci. Soc. Am. Proc.21: 25–28

    CAS  Google Scholar 

  • Hsu, P.H. 1965. Fixation of phosphate by aluminum and iron in acidic soils. Soil Sci. 99: 398–402

    CAS  Google Scholar 

  • Hughes, J.C., and R.J. Gilkes. 1984. The effect of chemical extractant on the estimation of rock phosphate fertilizer dissolution. Aust. J. Soil Res.22: 475–481

    CAS  Google Scholar 

  • Hughes, J.C., and R.J. Gilkes. 1986a. The effect of soil properties and level of fertilizer application on the dissolution of Sechura rock phosphate in some soils from Brazil, Colombia, Australia and Nigeria. Aust. J. Soil Res.24: 219–227

    CAS  Google Scholar 

  • Hughes, J.C., and R.J. Gilkes. 1986b. The effect of rock phosphate properties on the extent of fertilizer dissolution in soils. Aust. J. Soil Res.24: 209–217

    CAS  Google Scholar 

  • Ibrahim, H.S., and P.F. Pratt. 1982. Effects of rate of application and time on phosphorus sorption by soils. Soil Sci. Soc. Am. J.46: 926–928

    CAS  Google Scholar 

  • Imai, H., W.T. Goulding, and O. Talibudeen. 1981. Phosphate adsorption in allopha- nic soils. J. Soil Sci.32: 555–570

    CAS  Google Scholar 

  • Inskeep, W., and J.C. Silvertooth. 1988. Inhibition of hydroxyapatite precipitation in the presence of fulvic, humic and tannic acids. Soil Sci. Soc. Am. J.52: 941–946

    CAS  Google Scholar 

  • Islam, A., and R. Mandal. 1977. Amounts and mineralization of organic phosphorus compounds and derivatives in some surface soils of Bangladesh. Geoderma17: 57–68

    CAS  Google Scholar 

  • Jarrell, W.M., and R.B. Beverly. 1981. The dilution effect in plant nutrition studies. Adv. Agron.34: 197–224

    CAS  Google Scholar 

  • Jayachandran, K., A.P. Schwab, and B.A.D. Hetrick. 1989. Mycorrhizal mediation of phosphorus availability: Synthetic iron chelate effects on phosphorus solubilization. Soil Sci. Soc. Am. J.53: 1701–1706

    CAS  Google Scholar 

  • Jenkinson, D.S., and J.N. Ladd. 1981. Microbial biomass in soil: Measurement and turnover. InE.A. Paul and J.N. Ladd (Eds.). Soil Biochemistry. Marcel Dekker, New York, pp. 415 – 471.

    Google Scholar 

  • Jensen, H.E. 1971. Phosphate solubility in Danish soils equilibrated with solutions of differing phosphate concentrations. J. Soil Sci.22: 261–266

    CAS  Google Scholar 

  • Jones, C.A., C.V. Cole, A.N. Sharpley, and J.R. Williams. 1984a. A simplified soil and plant phosphorus model. I. Documentation. Soil Sci. Soc. Am. J.48: 800–805

    CAS  Google Scholar 

  • Jones, U.S., J.C. Katyal, C.P. Mamaril, and C.S. Park. 1982. Wetland rice nutrient deficiencies other than nitrogen. In Rice Research Strategies for the Future. International Rice Research Institute, Los Banos, Laguna, Philippines, pp. 327 – 378.

    Google Scholar 

  • Jones, C.A., A.N. Sharpley, and J.R. Williams. 1984b. A simplified soil and plant phosphorus model. III. Testing. Soil Sci. Soc. Am. J.48: 810–813

    CAS  Google Scholar 

  • Joos, L.L., and C.A. Black. 1950. Availability of phosphate rock as affected by particle size and contact with bentonite and soil of different pH values. Soil Sci. Soc. Am. Proc.15: 69–75

    Google Scholar 

  • Junge, A., and W. Werner. 1989. Investigations on interactions of phosphorus compounds in partially acidulated phosphate rock and fertilizer effectiveness. Fert. Res.20: 129–134

    Google Scholar 

  • Jungk, A., and N. Classen. 1986. Availability of phosphate and potassium as the result of interactions between root and soil in rhizosphere. Z. Pflanzenernaehr Bodenkd. 149: 411–427

    CAS  Google Scholar 

  • Juo, A.S.R. 1981. Chemical characteristics. InD.J. Greenland (ed.) Characterization of Soils. Clarendon Press, Oxford, pp. 51–79

    Google Scholar 

  • Jurinak, J.J., L.M. Dudley, M.F. Allen, and W.G. Knight. 1986. The role of calcium oxalate in the availability of phosphorus in soils of semiarid regions. A thermodynamic study. Soil Sci. 142: 255–261

    CAS  Google Scholar 

  • Kamprath, E.J., and M.E. Watson. 1980. Conventional soil and tissue tests for assessing the phosphorus status of soils. InF.E. Khasawneh, E.C. Sample, and E.J. Kamprath (Eds.). The Role of Phosphorus in Agriculture. Soil Sci. Soc. Am., Madison, Wisconsin, pp. 433–469

    Google Scholar 

  • Kanabo, I.A.K., and R.J. Gilkes. 1987a. A comparison between plant response and chemical measurements of the dissolution of reactive phosphate rock in soils of different pH and phosphorus retention. Aust. J. Soil Res.25: 451–460

    CAS  Google Scholar 

  • Kanabo, I.A.K., and R.J. Gilkes. 1987b. The role of soil pH in the dissolution of phosphate rock fertilizers. Fert. Res.12: 165–179

    CAS  Google Scholar 

  • Kanabo, I.A.K., and R.J. Gilkes. 1987c. The influence of the addition of goethite to soil on the dissolution of North Carolina phosphate rock. Aust. J. Soil Res.25: 313–322

    CAS  Google Scholar 

  • Kanabo, I.A.K., and R.J. Gilkes. 1988. The effects of moisture regime and incubation period on the dissolution of North Carolina phosphate rock in soil. Aust. J. Soil Res.26: 153–163

    CAS  Google Scholar 

  • Kato, N., and N. Owa. 1989. Kinetics of phosphate adsorption by sandy and clayey soils. Soil Sci. Plant Nutr.35: 119–129

    CAS  Google Scholar 

  • Khasawneh, F.E., and E.C. Doll. 1978. The use of phosphate rock for direct application to soils. Adv. Agron.30: 159–206

    CAS  Google Scholar 

  • Khasawneh, F.E., E.C. Sample, and I. Hashimoto. 1974. Reactions of ammonium ortho- and polyphosphate fertilizers in soil. I. Mobility of phosphorus. Soil Sci. Soc. Am. Proc.38: 446–451

    CAS  Google Scholar 

  • Kirk, G.J.D., and P.H. Nye. 1986. The dissolution and dispersion of dicalcium phosphate dihydrate in soils. IV. Experimental evaluation of the model for particles. J. Soil Sci.37: 525–528

    CAS  Google Scholar 

  • Kittrick, J. A., and M.L. Jackson. 1955a. Rate of phosphate reaction with soil minerals and electron microscrope observations on the reaction mechanism. Soil Sci. Soc. Am. Proc.19: 292–295

    CAS  Google Scholar 

  • Kittrick, J.A., and M.L. Jackson. 1955b. The common ion effect on phosphate solubility. Soil Sci. 79: 415–421

    CAS  Google Scholar 

  • Kittrick, J.A., and M.L. Jackson. 1956. Electron microscope observation of the reaction of phosphate with minerals leading to a unified theory of phosphate fixation. J. Soil Sci.7: 81–89

    CAS  Google Scholar 

  • Klages, M.G., R.A. Olsen, and V.A. Haby. 1988. Relationship of phosphorus isotherms to NaHC03-extractable phosphorus as affected by soil properties. Soil Sci. 146: 85–91

    CAS  Google Scholar 

  • Kodama, H., and M.D. Webber. 1975. Clay-inorganic studies. III. Hydroxy aluminum phosphate-montmorillonite complex. Can. J. Soil Sci.55: 225–233

    CAS  Google Scholar 

  • Kumar, P., and B. Mishra. 1986. Dissolution pattern of Indian rock phosphates in acid soils. J. Indian Soc. Soil Sci.34: 611–613

    CAS  Google Scholar 

  • Kuo, S. 1988. Application of a modified Langmuir isotherm to phosphate sorption by some acid soils. Soil Sci. Soc. Am. J.52: 97–102

    CAS  Google Scholar 

  • Kuo, S., and E.J. Jellum. 1987. Influence of soil characteristics and environmental conditions on seasonal variations of water-soluble phosphate in soils. Soil Sci.143: 257–263

    CAS  Google Scholar 

  • Kuo, S., E.J. Jellum, and W.L. Pan. 1988. Influence of phosphate sorption parameters of soils on the desorption of phosphate by various extractants. Soil Sci. Soc. Am. J.52: 974–979.

    CAS  Google Scholar 

  • Kuo, S., and E.G. Lotse. 1974a. Kinetics of phosphate adsorption and desorption by hematite and gibbsite. Soil Sci. 116: 400–406

    Google Scholar 

  • Kuo, S., and E.G. Lotse. 1974b. Kinetics of phosphate adsorption and desorption by lake sediments. Soil Sci. Soc. Am. Proc.38: 50–54

    Google Scholar 

  • Kuo, S., and B.L. McNeal. 1984. Effects of pH and phosphate on cadmium sorption by a hydrous ferric oxide. Soil Sci. Soc. Am. J.48: 1040–1044

    CAS  Google Scholar 

  • Kuo, S., and D.S. Mikkelsen. 1979. Distribution of iron and phosphorus in flooded and unflooded soil profiles and their relation to phosphorus adsorption. Soil Sci. 127: 18–25

    CAS  Google Scholar 

  • Kwong, K.F. Kee Ng, and P.M. Huang. 1979. Surface reactivity of aluminum hydroxides precipitated in the presence of low molecular weight organic acids. Soil Sci. Soc. Am. J.43: 1107–1113.

    Google Scholar 

  • Lajtha, K, and S.H. Bloomer. 1988. Factors affecting phosphate sorption and phosphate retention in a desert ecosystem. Soil Sci. 146: 160–167

    CAS  Google Scholar 

  • Lai, M., and I.C. Mahapatra. 1979. Phosphate transformation under continuous submergence in rice-barley rotation. J. Indian Soc. Soil Sci.27: 375–382.

    Google Scholar 

  • Lehr, J.R. 1972. Chemical reactions of micronutrients in fertilizers. InJ.J. Mortvedt, P.M. Giardano, and W.L. Lindsay, (Eds.). Micronutrients in Agriculture. Soil Sci. Soc. Am., Madison, Wisconsin, pp. 459–503

    Google Scholar 

  • Lehr, J. R. 1980. Phosphate raw materials and fertilizers. Part I—A look ahead. InF.E. Khasawneh, E.C. Sample, and E.J. Kamprath (Eds.). The Role of Phosphorus in Agriculture. Soil Sci. Soc. Am., Madison, Wisconsin, pp. 81–128

    Google Scholar 

  • Lehr, J.R., and G.H. McClellan. 1972. A revised laboratory reactivity scale for evaluating phosphate rocks for direct application. In TV A Bull. Y-43. Tennessee Valley Authority, Muscle Shoals, Alabama, p. 36

    Google Scholar 

  • Le Mare, P. H. 1982. Sorption of isotopically exchangeable and nonexchangeable phosphate by some soils of Colombia and Brazil, and comparisons with soils of southern Nigeria. J. Soil Sci.33: 691–707

    Google Scholar 

  • Le Mare, P.H., and L.A. Leon. 1989. The effects of lime on adsorption and desorption of phosphate in five Colombian soils. J. Soil Sci.40: 59–69.

    Google Scholar 

  • Leon, L. A., W.E. Fenster, and L.L. Hammond. 1986. Agronomic potential of eleven phosphate rocks from Brazil, Colombia, Peru and Venezuela. Soil Sci. Soc. Am. J.50: 798–802

    Google Scholar 

  • Lin, C., W.J. Busscher, and L.A. Douglas. 1983a. Multifactor kinetics of phosphate reactions with minerals in acidic soils. I. Modeling and simulation. Soil Sci. Soc. Am. J.47: 1097–1103

    CAS  Google Scholar 

  • Lin, C., L.A. Douglas, H.L. Motto, and W.J. Busscher. 1986. Phosphate reaction models for the Lakehurst soil in the New Jersey Pine barrens. Soil Sci. 142: 125–131

    CAS  Google Scholar 

  • Lin, C., H.L. Motto, L.A. Douglas, and W.J. Busscher. 1983b. Multifactor kinetics of phosphate reactions with minerals in acid soils. II. Experimental curve fitting. Soil Sci. Soc. Am. J.47: 1103–1109

    CAS  Google Scholar 

  • Lindsay, W.L., J.R. Lehr, and H.F. Stephenson. 1959a. Nature of the reactions of monocalcium phosphate monohydrate in soils. III. Studies with metastable triple- point solution. Soil Sci. Soc. Am. Proc. 23:342–345

    Google Scholar 

  • Lindsay, W.L., M. Peech, and J.S. Clark. 1959b. Solubility criteria for the existence of variscite in soils. Soil Sci. Soc. Am. Proc.23: 357–360

    CAS  Google Scholar 

  • Loganathan, P., N.O. Isirimah, and D.A. Nwachuku. 1987. Phosphorus sorption by Ultisols and Inceptisols of the Niger delta in southern Nigeria. Soil Sci. 144: 330–338

    CAS  Google Scholar 

  • Logan, T.J., and E.O. McLean. 1977. Diffusion of 32P from partially acidulated rock phosphate. Soil Sci. 123: 203–206

    CAS  Google Scholar 

  • Lopez-Hernandez, D. 1987. Phosphate adsorption vaiability within soil series and in diverse soil populations. Soil Sci. 144: 408–411.

    CAS  Google Scholar 

  • MacKay, A.D., and J.K. Syers. 1986. Effect of phosphate, calcium, and pH on the dissolution of a phosphate rock in soil. Fert. Res.10: 175–184

    CAS  Google Scholar 

  • MacKay, A.D., J.K. Syers, P.E.H. Gregg, and R.W. Tillman. 1984. A comparison of three soil-testing procedures for estimating the plant availability of phosphorus in soils receiving either superphosphate or phosphate rock. New Zeal. J. Agr. Res.27: 231–245

    CAS  Google Scholar 

  • MacKay, A.D., J.K. Syers, R.W. Tillman, and P.E.H. Gregg. 1986. A simple model to describe the dissolution of phosphate rock in soils. Soil Sci. Soc. Am. J.50: 291–296

    CAS  Google Scholar 

  • Madrid, L., and A.M. Posner. 1979. Desorption of phosphate from goethite. J. Soil Sci.30: 697–707

    CAS  Google Scholar 

  • Mahapatra, I.C., and W.H. Patrick, Jr. 1969. Inorganic phosphate transformation in waterlogged soils. Soil Sci. 107: 281–288

    CAS  Google Scholar 

  • Mahapatra, I.C., and W.H. Patrick, Jr. 1971. Evaluation of phosphate fertility in waterlogged soils. In Proc. Int. Symp. on Soil Fertility Evaluation. Indian Soc. Soil Sci., New Delhi, pp. 53–62

    Google Scholar 

  • Mandal, L.N. 1964. Effect of time, starch, and lime on the transformation of inorganic phosphorus in waterlogged rice soil. Soil Sci. 97: 127–132

    CAS  Google Scholar 

  • Mandal, L.N. 1979. Transformation of phosphorus in waterlogged soil. Bull. Indian Soc. Soil Sci.12: 73–80

    CAS  Google Scholar 

  • Mandal, L.N. 1984. Soil research in relation to rice. J, Indian Soc. Soil Sci.32: 575–582

    Google Scholar 

  • Mandal, L.N., and K.C. Mandal. 1973. Influence of organic matter and lime on the transformation of applied phosphate in acidic lowland rice soils. J. Indian Soc. Soil Sci.21: 57–62

    CAS  Google Scholar 

  • Mandal, L.N., and S.K. Khan. 1975. Influence of soil moisture regime on transformation of inorganic phosphorus in rice soils. J. Indian Soc. Soil Sci.23: 31–37

    CAS  Google Scholar 

  • Mandal, L.N., and S.K. Khan. 1977a. Transformation of phosphorus in soils under waterlogged condition. J. Indian Soc. Soil Sci.25: 122–128

    CAS  Google Scholar 

  • Mandal, L.N., and S.K. Khan. 1977b. Influence of moisture regimes on the transformation of the recently applied phosphate in soil and its availability to rice crop. J. Indian Soc. Soil Sci.25: 379–383

    CAS  Google Scholar 

  • Manikandan, P., and T.G. Sastry. 1988. Role of different soil components in phosphate adsorption in some soils of Mysore plateau. J. Indian Soc. Soil Sci.36: 228–234

    Google Scholar 

  • Mansell, R.S., and H.M. Selim. 1981. Mathematical models for predicting reactions and transport of phosphorus applied to soils. InI.K. Iskandar (Ed.). Modeling Wastewater Renovation. Wiley Interscience., New York, pp. 600–646

    Google Scholar 

  • Martel, Y.A., and E.A. Paul. 1974. Effects of cultivation on the organic matter of grassland soils as determined by fractionation and radiocarbon dating. Can. J. Soil Sci.54: 419–426

    CAS  Google Scholar 

  • Martin, J.K., and R.C. Foster. 1985. A model system for studying the biochemistry and biology of the root soil interface. Soil Biol. Biochem.17: 261–269

    CAS  Google Scholar 

  • Martin, R.R., R.St.C. Smart, and Q. Tazaki. 1988. Direct observation of phosphate precipitation in the goethite/phosphate system. Soil Sci. Soc. Am. J.52: 1492–1500

    CAS  Google Scholar 

  • Marwaha, B.C. 1983. Partially acidulated rock phosphate as a source of fertilizer phosphorus with special reference to high P-fixing acid soils—A review. Proc. Indian Natn. Sci. Acad.B49: 436–446

    Google Scholar 

  • Marwaha, B.C., B.S. Kapoor, and B.R. Tripathi. 1983. Responsiveness of some Indian rock phosphates to acidulation with phosphoric and nitric acids. J. Indian Soc. Soil Sci.31: 328–330

    CAS  Google Scholar 

  • Mattson, S., E. Alvsaker, E. Koutler-Anderson, E. Barkoff, and K. Vahtras. 1950. Phosphate relationships of soil and plant. VI. The salt effect on phosphate solubility in pedalfer soils. Ann. Roy. Agric. Coll. Swed.17: 141–160

    Google Scholar 

  • McClellan, G.H., and L.R. Gremillion. 1980. Evaluation of phosphatic raw materials. InF.E. Khasawneh, E.C. Sample, and E.J. Kamprath (Eds.). The Role of Phosphorus in Agriculture. Soil Sci. Soc. Am., Madison, Wisconsin, pp. 43–80

    Google Scholar 

  • McGill, W.B., and C.V. Cole. 1981. Comparative aspects of cycling of organic C, N, S, and P through soil organic matter. Geoderma 26: 267–286

    CAS  Google Scholar 

  • McLaughlin, M.J., and A.M. Alston. 1985. Measurement of phosphorus in the soil microbial biomass: Influence of plant material. Soil Biol. Biochem.17: 271–274

    CAS  Google Scholar 

  • McLaughlin, M.J., and A.M. Alston. 1986. The relative contribution of plant residues and fertilizer to the phosphorus nutrition of wheat in a pasture/cereal system. Aust. J. Soil Res.24: 517–526

    Google Scholar 

  • McLaughlin, M.J., A.M. Alston, and J.K. Martin. 1986. Measurement of phosphorus in the soil microbial biomass: A modified procedure for field soils. Soil Biol. Biochem.18: 437–443

    CAS  Google Scholar 

  • McLaughlin, M.J., A.M. Alston, and J.K. Martin. 1987. Transformations and movement of P in the rhizosphere. Plant Soil97: 391–399

    CAS  Google Scholar 

  • McLaughlin, M.J., A.M. Alston, and J.K. Martin. 1988a. Phosphorus cycling in wheat-pasture rotations. I. The source of phosphorus taken up by wheat. Aust. J. Soil Res.26: 323–331

    Google Scholar 

  • McLaughlin, M.J., A.M. Alston, and J.K. Martin. 1988b. Phosphorus cycling in wheat-pasture rotations. II. The role of the microbial biomass in phosphorus cycling. Aust. J. Soil Res. 26: 333–342

    Google Scholar 

  • McLaughlin, M.J., A.M. Alston, and J.K. Martin. 1988c. Phosphorus cycling in wheat- pasture rotations. III. Organic phosphorus turnover and phosphorus cycling. Aust. J. Soil Res.26: 343–353

    Google Scholar 

  • McLaughlin, J.R., J.C. Ryden, and J.K. Syers. 1981. Sorption of inorganic phosphate by iron- and aluminum-containing components. J. Soil Sci.32: 365–377

    CAS  Google Scholar 

  • McLaughlin, J.R., and J.K. Syers. 1978. Stability of ferric phosphates. J. Soil Sci.29: 499–504

    CAS  Google Scholar 

  • McLean, E.O., and B.S. Balam. 1967. Partially acidulated rock phosphate as a source of phosphorus to plants. III. Uptake by corn from soils of different calcium status. Soil Sci. Soc. Am. Proc.31: 811–814

    CAS  Google Scholar 

  • McLean, E.O., and T.J. Logan. 1970. Sources of phosphorus for plants grown in soils with different phosphorus fixation tendencies. Soil Sci. Soc. Am. Proc.34: 906–911

    Google Scholar 

  • McLean, E.O., and R.W. Wheeler. 1964. Partially acidulated rock phosphate as a source of phosphorus to plants. I. Growth chamber studies. Soil Sci. Soc. Am. Proc.28: 545–550

    CAS  Google Scholar 

  • McLean, E.O., R.W. Wheeler, and J.D. Watson. 1965. Partially acidulated rock phosphate as a source of phosphorus to plants. Growth chamber and field corn studies. Soil Sci. Soc. Am. Proc.29: 625–628

    Google Scholar 

  • McSweeney, G., and A.G. Charleston. 1985. Partially acidulated phosphate rocks— reactions with water. Fert. Res.8: 75–83

    CAS  Google Scholar 

  • Mead, J.A. 1981. A comparison of the L, F, and T equations to describe phosphate adsorption properties of soils. Aust. J. Soil Res.19: 333–342

    CAS  Google Scholar 

  • Mehadi, A.A., and R.W. Taylor. 1988. Phosphate adsorption by two highly weathered soils. Soil Sci. Soc. Am. J.52: 627–632

    CAS  Google Scholar 

  • Mendoza, R.E., and N.J. Barrow. 1987a. Characterizing the rate of reaction of some Argentinian soils with phosphate. Soil Sci. 143: 105–112

    CAS  Google Scholar 

  • Mendoza, R.E., and NJ. Barrow. 1987b. Ability of three soil extractants to reflect the factors that determine the availability of soil phosphate. Soil Sci. 144: 319–329

    CAS  Google Scholar 

  • Mishra, B., P. Kumar, and G.K. Dwivedi. 1985. Effectiveness of Indian rock phosphates in acid soils. J. Indian Soc. Soil Sci.33: 574–580.

    CAS  Google Scholar 

  • Mishra, M.M., K.K. Kapoor, and K.S. Yadav. 1982. Preparation of P-enriched compost with rock phosphate and its effect on crop yield. Indian J. agric. Sci.52: 674–678

    Google Scholar 

  • Mizota, C., M.A. Carrasco, and K. Wada. 1982. Clay mineralogy and some chemical properties of Ap horizons of Ando soils used for paddy rice in Japan. Geoderma27: 225–237

    CAS  Google Scholar 

  • Mokwunye, U. 1975. The influence of pH on the adsorption of phosphate by soils from the Guinea and Sudan savannah zones of Nigeria. Soil Sci. Soc. Am. Proc.39: 1100–1102

    CAS  Google Scholar 

  • Mokwunye, A.U., and S.H. Chien. 1980. Reactions of partially acidulated phosphate rock with soils from the tropics. Soil Sci. Soc. Am. J.44: 477–482

    CAS  Google Scholar 

  • Molloy, L.F., and L.C. Blackemore. 1974. Studies on a climosequence of soils in tussock grasslands. I. Introduction, sites, and soils. New Zeal. J. Sci.17: 233–255

    CAS  Google Scholar 

  • Moody, P.W., and D.J. Radcliffe. 1986. Phosphorus sorption by Andepts from the southern highlands of Papua New Guinea. Geoderma37: 137–147

    CAS  Google Scholar 

  • Morel, F.M.M., J.G. Yeasted, and J.C. Westall. 1981. Adsorption models: A mathematical analysis in the framework of general equilibrium calculations. In M.A. Anderson and A.J. Rubin (Eds.). Adsorption of Inorganics at Solid-Liquid Interfaces. Ann Arbor Sci. Pub., Inc., Ann Arbor, Michigan, pp. 263–294.

    Google Scholar 

  • Mosse, B. 1973. Advances in the study of vesicular-arbuscular mycorrdhiza. Annu. Rev. Phytopathol.11: 171–196

    Google Scholar 

  • Mouat, M.C.H. 1983. Release of phosphate from soil measured by sequential desorption. New Zeal. J. Agr. Res..26: 321–326

    Google Scholar 

  • Muchovej, R.M.C., J.J. Muchovej, and Y.H. Alvarez V. 1989. Temporal relations of phosphorus fractions in an Oxisol amended with rock phosphate and Thiobacillus thiooxidans. Soil Sci. Soc. Am. J. 53: 1096–1100

    Google Scholar 

  • Mukherjee, S.K., S.K. Ghosh, and K. Ghosh. 1979. Mineralogy and chemistry of phosphorus in the soil. Bull. Indian Soc. Soil Sci.12: 9–22

    CAS  Google Scholar 

  • Muller-Harvey, I., and A. Wild. 1987. Isolation of a new sugar phosphate from forest leaf litter in Nigeria. Soil Biol. Biochem.19: 323–327

    Google Scholar 

  • Munch, J.C., T. Hillebrand, and J.C.G. Ottow. 1978. Transformations in the Fe0/Fed ratio of pedogenic iron oxides affected by iron-reducing bacteria. Can. J. Soil Sci.58: 475–486.

    CAS  Google Scholar 

  • Munch, J.C., and J.C.G. Ottow. 1980. Preferential reduction of amorphous to crystalline iron oxides by bacterial activity. Soil Sci. 129: 15–21

    CAS  Google Scholar 

  • Munns, D.N., and R.L. Fox. 1976. The slow reaction which continues after phosphate adsorption: Kinetics and equilibrium in some tropical soils. Soil Sci. Soc. Am. J.40: 46–51

    CAS  Google Scholar 

  • Murrmann, R.P., and M. Peech. 1968. Reaction products of applied phosphate in limed soils. Soil Sci. Soc. Am. Proc.32: 493–496

    CAS  Google Scholar 

  • Murrmann, R.P., and M. Peech. 1969. Relative significance of labile and crystalline phosphates in soil. Soil Sci. 107: 249–255

    CAS  Google Scholar 

  • Naidu, R., J.K. Syers, R.W. Tillman, and J.H. Kirkman. 1990. Effect of liming on phosphate sorption by acid soils. J. Soil Sci.41: 165–175

    CAS  Google Scholar 

  • Nanzyo, M. 1984. Diffuse reflectance infrared spectra of phosphate sorbed on alumina gel. J. Soil Sci.35: 63–69

    CAS  Google Scholar 

  • Nanzyo, M. 1986. Infrared spectra of phosphate sorbed on iron hydroxide gel and the sorption products. Soil Sci. Plant Nutr.32: 51–58

    CAS  Google Scholar 

  • Newman, E.J. 1978. Root microorganisms: Their significance in the ecosystem. Biol. Rev.53: 511–554

    CAS  Google Scholar 

  • Newman, R.H., and K.R. Tate. 1980. Soil phosphorus characterization by 31P nuclear magnetic resonance. Commun. Soil Sci. Plant Anal.11: 835–842

    CAS  Google Scholar 

  • Nordengren, S. 1957. New theories of phosphate reactions in the soil. Fert. and Feeding Stuffs J.47: 348–352

    Google Scholar 

  • Notholt, A.J.G. 1975. Phosphate rock: World production, trade, and resources. Proc. 1st Ind. Miner, Int. Congr., London. Metals Bull. Ltd., Surrey, England, pp. 104–120

    Google Scholar 

  • Novak, L.T., and J.W. Petschauer. 1979. Kinetics of reaction between orthophosphate ions and Muskegon dune sand. J. Environ. Qual.8: 312–318

    CAS  Google Scholar 

  • O’Connor, G.A., K.L. Knudtsen, and G.A. Connel. 1986. Phosphorus solubility in sludge-amended calcareous soils. J. Environ. Qual.15: 308–312

    Google Scholar 

  • Okajima, H., H. Kubota, and T. Sakuma. 1983. Hysteresis in the phosphorus sorption and desorption processes of soils. Soil Sci. Plant Nutr.29: 271–283

    CAS  Google Scholar 

  • Olsen, R.A. 1975. Rate of dissolution of phosphate from minerals and soils. Soil Sci. Soc. Am. Proc.29: 634–639

    Google Scholar 

  • Olsen, R.G., and M.N. Court. 1982. Effect of wetting and drying of soils on phosphate adsorption and resin extraction of soil phosphate. J. Soil Sci.33: 709–717

    CAS  Google Scholar 

  • Olsen, S.R., and F.E. Khasawneh. 1980. Use and limitations of physical-chemical criteria for assessing the status of phosphorus in soils. InF.E. Khasawneh, E.C. Sample, and E.J. Kamprath (Eds.). The Role of Phosphorus in Agriculture. Soil Sci. Soc. Am., Madison, Wisconsin, pp. 361–410

    Google Scholar 

  • Onken, A.B., and R.L. Matheson. 1982. Dissolution rate of EDTA-extractable phosphate from soils. Soil Sci. Soc. Am. J.46: 276–279

    CAS  Google Scholar 

  • Pairunan, A.K., A.D. Robson, and L.K. Abbott. 1980. The effectiveness of vesicular- arbuscular mycorrhizas in increasing growth and phosphorus uptake of subterranean clover from phosphorus sources of different solubilities. New Phytol. 84: 327–338

    CAS  Google Scholar 

  • Palmer, B., M.D.A. Bolland, and R.J. Gilkes. 1979. A re-evaluation of the effectiveness of calcined Christmas Island C-grade rock phosphate. Aust. J. Expt. Agric. Anim. Hush.19: 605–610

    Google Scholar 

  • Parfitt, R.L. 1977. Phosphate adsorption on an Oxisol. Soil Sci. Soc. Am. J.41: 1064–1067

    CAS  Google Scholar 

  • Parfitt, R.L. 1978. Anion adsorption by soils and soil materials. Adv. Agron. 30: 1–50

    CAS  Google Scholar 

  • Parfitt, R.L., L.J. Hume, and G.P. Sparling. 1989. Loss of availability of phosphate in New Zealand soils. J. Soil Sci. 40:371–382

    Google Scholar 

  • Parton, W.J., D.S. Schimel, C.V. Cole, and D.S. Ojima. 1987. Analysis of factors controlling soil organic matter levels in great plains grasslands. Soil Sci. Soc. Am. J.51: 1173–1179

    CAS  Google Scholar 

  • Parton, W.J., J.W.B. Stewart, and C.V. Cole. 1988. Dynamics of C, N, P and S in grassland soils: A model. Biogeochemistry5: 109–131

    CAS  Google Scholar 

  • Pathiratna, L.S.S., U.P. De, S. Waidyantha, and O.S. Peries. 1989. The effect of apatite and elemental sulfur mixtures on growth and P content of Centrocema pubescens. Fert. Res. 21: 37–43

    CAS  Google Scholar 

  • Patrick, W.H., Jr., and I.C. Mahapatra. 1968. Transformation and availability to rice of nitrogen and phosphorus in waterlogged soils. Adv. Agron. 20: 323–359

    CAS  Google Scholar 

  • Patrick, W.H., Jr., D.S. Mikkelsen, and B.R. Wells. 1985. Plant nutrient behavior in flooded soil. In Fertilizer Use and Technology, 3d ed. Soil Sci. Soc. Am., Madison, Wisconsin, pp. 197–228

    Google Scholar 

  • Patrick, W.H., Jr., and F.J. Peterson, and F.E. Wilson. 1974. Response of lowland rice to time and method of application of phosphate. Agron. J.66: 459–460

    Google Scholar 

  • Pavlatou, A., and N.A. Polyzopoulos. 1988. The role of diffusion in the kinetics of phosphate desorption: The relevance of the Elovich equation. J. Soil Sci.39: 425–436

    CAS  Google Scholar 

  • Pena, F., and J. Torrent. 1984. Relationships between phosphate sorption and iron oxides in Alfisols from a river terrase sequence of Mediterranean Spain. Geoderma33: 283–296

    CAS  Google Scholar 

  • Perrott, K.W., F.M. Maher, and B.S. Thorrold. 1989. Accumulation of phosphorus fractions in yellow-brown pumice soils with development. New Zeal. J. Agr. Res.32: 53–62

    Google Scholar 

  • Perrott, K.W., and G.P. Mansell. 1989. Effect of fertilizer phosphorus and liming on inorganic and organic soil phosphorus fractions. New Zeal. J. Agr. Res.32: 63–70

    Google Scholar 

  • Polyzopoulos, N.A., V.Z., Keramidas, and H. Kiosse. 1985. Phosphate sorption by some Alfisols of Greece as described by commonly used isotherms. Soil Sci. Soc. Am. J.49: 81–84

    CAS  Google Scholar 

  • Polyzopoulos, N.A., V.Z. Keramidas, and A. Pavlatou. 1986. On the limitations of the simplified Elovich equation in describing the kinetics of phosphate sorption and release from soils. J. Soil Sci.37: 81–87

    CAS  Google Scholar 

  • Ponnamperuma, F.N. 1965. Dynamic aspects of flooded soils and the nutrition of rice plant. In The Mineral Nutrition of the Rice Plant. Johns Hopkins, Baltimore, Maryland, pp. 295–328.

    Google Scholar 

  • Ponnamperuma, F.N. 1972. The chemistry of submerged soils. Adv. Agron.24: 29–97

    CAS  Google Scholar 

  • Ponnamperuma, F.N. 1985. Chemical kinetics of wetland rice soils relative to soil fertility. In Wetland Soils: Characterization, Classification, and Utilization. International Rice Research Institute, Los Banos, Laguna, Philippines, pp. 71–89

    Google Scholar 

  • Ponnamperuma, F.N., E.M. Tianco, and T.A. Loy. 1967. Redox equilibria in flooded soils: I. The iron hydroxide systems. Soil Sci. 103: 374–382

    CAS  Google Scholar 

  • Posner, A.M., and N.J. Barrow, 1982. Simplification of a model for ion adsorption on oxide surfaces. J. Soil Sci.33: 211–217

    CAS  Google Scholar 

  • Powell, C.L.T. 1982. Phosphate response curves of mycorrhizal and non-mycorrhizal plants. III. Cultivar effects in Lotus pedunculatusCav. and Trifolium repensL. New Zeal. J. Agr. Res25: 217–222

    Google Scholar 

  • Prabhudesai, S.S., and S.B. Kadrekar. 1984. Reaction products from fertilizer phosphorus in lateritic soils of Konkan region. J. Indian Soc. Soil Sci.32: 52–56

    CAS  Google Scholar 

  • Probert, M.E. 1980. Growth responses to various calcium sources in a yellow earth soil with low calcium status. Aust. J. Exp. Agric. Anim. Husb20: 240–246

    Google Scholar 

  • Quin, B.F. 1981. Performance of reactive phosphate rocks on irrigated and non- irrigated pasture. In Proc. Tech. Workshop on the Potential of Phosphate Rock as a Direct Application Fertilizer in New Zealand. Occasional Report No. 3. Massey Univ., Palmerston North, New Zealand, pp. 13–20

    Google Scholar 

  • Quin, B.F., L.M. Condron, D.S. Richard, and K.M. Goh. 1984. Changes in soil organic phosphorus. In Proc. Workshop on Lime in Agriculture. MAP Workshop, Ruakura, pp. 43–46

    Google Scholar 

  • Racz, G.J. 1979. Release of P in organic soils under aerobic and anaerobic conditions. Can. J. Soil Sci59: 337–339

    CAS  Google Scholar 

  • Rajan, S.S.S. 1982a. Influence of phosphate rock reactivity and granule size on the effectiveness of “biosuper.” Fert. Res. 3: 3–12

    Google Scholar 

  • Rajan, S.S.S. 1982b. Availability to plants of phosphate from “biosupers” and partially acidulated phosphate rock. New Zeal. J. Agric. Res.25: 355–361

    CAS  Google Scholar 

  • Rajan, S.S.S. 1983a. Effect of sulfur content of phosphate rock/sulfur granules on the availability of phosphate to plants. Fert. Res. 4: 287–296

    CAS  Google Scholar 

  • Rajan, S.S.S. 1983b. Rotokawa sulfur in phosphate rock/sulfur granules—a greenhouse study. New Zeal. J. Agric. Res.26: 233–236

    CAS  Google Scholar 

  • Rajan, S.S.S. 1985. Partial acidulation of an “underground” phosphate rock: 1. Preparation and characteristics. Fert. Res.8: 147–155

    CAS  Google Scholar 

  • Rajapakse, S., D.A. Zuberer, and J.C. Miller, Jr. 1989. Influence of phosphorus level on VA mycorrhizal colonization and growth of cowpea cultivars. Plant Soil114: 45–52

    CAS  Google Scholar 

  • Raju, P.S., R.B. Clark, J.R. Ellis, and J.W. Maranville. 1987. Vesicular-arbuscular mycorrhizal infection effects on sorghum growth, phosphorus efficiency, as mineral element uptake. J. Plant Nutr.10: 1331–1339

    CAS  Google Scholar 

  • Ram, M., R.N. Prasad, and P. Ram. 1987. Studies on phosphate adsorption and phosphate fixation in Alfisols and Entisols occurring in different altitudes of Meghalaya. J. Indian Soc. Soil Sci.35: 207–216

    CAS  Google Scholar 

  • Ram, P., and R.N. Rai. 1987. Effect of liming on phosphate potential and solubility in acid soils of Sikkim. J. Indian Soc. Soil Sci.35: 369–374

    Google Scholar 

  • Ramanie, S.K., J.H. Baker, and A.V. Barker. 1986. Phosphorus uptake by mycorrhizal and non-mycorrhizal roots of soybean. J. Plant Nutr.9: 1303–1313

    Google Scholar 

  • Rao, A.S., R. Hasan, and A.B. Ghosh. 1983. Phosphate adsorption behavior under continuous cropping and fertilizer use in an alluvial soil. J. Indian Soc. Soil Sci.31: 606–607

    Google Scholar 

  • Ratkowsky, D.A. 1986. A statistical study of seven curves for describing the sorption of phosphate by soil. J. Soil Sci.37: 183–189

    CAS  Google Scholar 

  • Reddy, K.R., and P.S.C. Rao. 1983. Nitrogen and phosphorus fluxes from a flooded organic soil. Soil Sci. 136: 300–307

    CAS  Google Scholar 

  • Reid, R.K., C.P.P. Reid, and P.J. Szanislo. 1985. Effects of synthetic and microbially produced chelates on the diffusion of iron and phosphorus to a simulated root in soil. Biol. Fertil. Soils1: 45–52

    CAS  Google Scholar 

  • Resseler, H., and W. Werner. 1989. Properties of unreacted rock residues in partially acidulated phosphate rocks affecting their reactivity. Fert. Res.20: 135–142

    Google Scholar 

  • Rojo, M.J., S.G. Carcedo, and M.P. Mateos. 1990. Distribution and characterization of phosphatase and organic phosphorus in soil fractions. Soil Biol. Biochem.22: 169–174

    CAS  Google Scholar 

  • Roy, A.C., and S.K. De Datta. 1985. Phosphate sorption isotherms for evaluating phosphorus requirement of wetland rice soils. Plant Soil86: 185–196

    CAS  Google Scholar 

  • Rovira, A.D. 1979. Biology of soil-root interface. InJ.L. Harley and R.S. Russell (Eds.). The Soil Root Interface. Acad. Press, New York, pp. 145–160

    Google Scholar 

  • Ru-kun, L., J. Bai-fan, and L. Ching-kwei. 1982. Phosphorus management for submerged soil. Proc. 12th Int. Cong. Soil Sci., Symposia Paper II. Indian Soc. Soil Sci., New Delhi, pp. 182–191

    Google Scholar 

  • Russell, J.S., E.J. Kamprath, and C.S. Andrew. 1988. Phosphorus sorption of subtropical acid soils as influenced by the nature of the cation suite. Soil Sci. Soc. Am. J.52: 1407–1410

    CAS  Google Scholar 

  • Ryden, J.C., J.R. McLaughlin, and J.K. Syers. 1977a. Mechanisms of phosphate sorption by soils and hydrous ferric oxide gel. J. Soil Sci.28: 72–92

    CAS  Google Scholar 

  • Ryden, J.C., J.R. McLaughlin, and J.K. Syers. 1977b. Time-dependent sorption of phosphate by soils and hydrous ferric oxides. J. Soil Sci.28: 585–595

    CAS  Google Scholar 

  • Ryden, J.C., and P.F. Pratt. 1980. Phosphorus removal from wastewater applied to land. Hilgardia48: 1–36

    Google Scholar 

  • Ryden, J.C., and J.K. Syers. 1977. Desorption and isotopic exchange relationships of phosphate sorbed by soils and hydrous ferric oxide gel. J. Soil Sci.28: 596–609

    CAS  Google Scholar 

  • Ryden, J.C., J.K. Syers, and R.W. Tillman. 1987. Inorganic anion sorption and interactions with phosphate sorption by hydrous ferric oxide gel. J. Soil Sci.38: 211–217

    CAS  Google Scholar 

  • Sah, R.N., and D.S. Mikkelsen. 1986a. Transformations of inorganic phosphorus during the flooding and draining cycles of soil. Soil Sci. Soc. Am. J.50: 62–67

    CAS  Google Scholar 

  • Sah, R.N., and D.S. Mikkelsen. 1986b. Effects of anaerobic decomposition of organic matter on sorption and transformations of phosphate in drained soils: 2. Effects on amorphous iron content and phosphate transformation. Soil Sci. 142: 346–351

    CAS  Google Scholar 

  • Sah, R.N., and D.S. Mikkelsen. 1986c. Effects of temperature and prior flooding on intensity and sorption of phosphate in soil. I. Effects on the kinetics of soluble P in soil. Plant Soil95: 163–171

    CAS  Google Scholar 

  • Sah, R.N., and D.S. Mikkelsen. 1986d. Effects of temperature and prior flooding on intensity and sorption of phosphate in soil. II. Effects on P sorption. Plant Soil95: 173–181

    CAS  Google Scholar 

  • Sah, R.N., and D.S. Mikkelsen. 1986e. Effects of anaerobic decomposition of organic matter on sorption and transformations of phosphate in drained soils: 1. Effects on phosphate sorption. Soil Sci. 142: 267–274

    CAS  Google Scholar 

  • Sah, R.N., and D.S. Mikkelsen. 1986f. Sorption and bioavailability of phosphorus during the drainage period of flooded-drained soils. Plant Soil 92:265-278.

    CAS  Google Scholar 

  • Sah, R.N., and D.S. Mikkelsen. 1989. Phosphorus behavior in flooded-drained soils. I. Effects on phosphorus sorption. Soil Sci. Soc. Am. J.53: 1718–1722

    CAS  Google Scholar 

  • Sah, R.N., D.S. Mikkelsen, and A.A. Hafez. 1989a. Phosphorus behavior in flooded- drained soils. II. Iron transformation and phosphorus sorption. Soil Sci. Soc. Am. J.53: 1723–1729

    CAS  Google Scholar 

  • Sah, R.N., D.S. Mikkelsen, and A.A. Hafez. 1989b. Phosphorus behavior in flooded- drained soils. III. Phosphorus desorption and availability. Soil Sci. Soc. Am. J.53: 1729–1732

    CAS  Google Scholar 

  • Sahrawat, K.L., and G.P. Warren. 1989. Sorption of labelled phosphate by a Vertisol and an Alfisol of the semi-arid zone of India. Pert. Res.20: 17–25

    CAS  Google Scholar 

  • Sainz, M.J., and J. Arines. 1988. Phosphorus absorbed from soil by mycorrhizal red clover plants as affected by soluble P fertilization. Soil Biol. Biochem.20: 61–67

    CAS  Google Scholar 

  • Salih, H.M., A.I. Yahya, A.M. Abdul-Rahem, and B.H. Munam. 1989. Availability of phosphorus in a calcareous soil treated with rock phosphate or superphosphate as affected by phosphate-dissolving fungi. Plant Soil120: 181–185

    CAS  Google Scholar 

  • Sample, E.C., R.J. Soper, and GJ. Racz. 1980. Reactions of phosphate fertilizers in soils. InF.E. Khasawneh, E.C. Sample, and E.J. Kamprath (Eds.). The Role of Phosphorus in Agriculture. Soil Sci. Soc. Am., Madison, Wisconsin, pp. 263–310

    Google Scholar 

  • Sanchez, P.A., and J. Salinas. 1981. Low-input technology for managing Oxisols and Ultisols in tropical America. Adv. Agron.34: 279–406

    CAS  Google Scholar 

  • Sanchez, P.A., and G. Uehara. 1980. Management considerations for acid soils with high phosphorus fixation capacity. InF.E. Khasawneh, E.C. Sample, and E.J. Kamprath (Eds.). The Role of Phosphorus in Agriculture. Soil Sci. Soc. Am., Madison, Wisconsin, pp. 471–514

    Google Scholar 

  • Sanders, F.E., and P.B. Tinker. 1971. Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature233: 278–279

    CAS  Google Scholar 

  • Sanford, R.L., Jr., W.J. Parton, and C.V. Cole, 1989. Soil phosphorus interrelationships with carbon, nitrogen and sulfur: A modeling approach. InH. Tiessen (ed.). Phosphorus Cycles in Terrestrial and Aquatic Ecosystem, Regional Workshop 1: Europe. Saskatchewan Institute of Pedology, Univ. of Saskatchewan, Saskatoon, Canada, pp. 30–41

    Google Scholar 

  • Sanyal, S.K., P.Y. Chan, and S.K. De Datta. 1990. Phosphate sorption-desorption behavior of some acidic soils in South and Southeast Asia. Paper presented at the 6th Philippine Chemistry Congress, Cebu City, Philippines, 24–26 May, 1990

    Google Scholar 

  • Sarkar, S.K., S.N. Basu, and D. Guha. 1986. Phosphate equilibria in acid soil. J. Indian Soc. Soil Sci.34: 471–475

    CAS  Google Scholar 

  • Satyanarayana, T., and B.P. Ghildyal. 1970. Influence of soil water regimes on the growth and nutrient uptake by rice (Oryza sativa). J. Indian Soc. Soil Sci. 18: 41–44

    Google Scholar 

  • Saunders, W.M.H. 1965. Phosphate retention by New Zealand soils and its relationship to free sesquioxides, organic matter, and other soil properties. New Zeal. J. Agric. Res.8: 30–57.

    CAS  Google Scholar 

  • Saunders, W.M.H., and A.J. Metson. 1971. Seasonal variation of phosphorus in soil and pasture. New Zeal. J. Agric. Res.14: 307–328

    CAS  Google Scholar 

  • Savant, N.K., D.R. Kene, and N.N. Kibe. 1970. Influence of alternate submergence and drying of rice soils prior to resubmergence on available phosphorus. Plant Soil32: 521–525

    Google Scholar 

  • Saxena, S.N. 1979. Biochemistry of soil phosphorus. Bull. Indian Soc. Soil Sci..12: 42–57

    CAS  Google Scholar 

  • Schwab, A.P., and W.L. Lindsay. 1983. Effect of redox on the solubility and availability of iron. Soil Sci. Soc. Am. J.47: 201–205

    CAS  Google Scholar 

  • Sharma, J.P., and S.N. Saxena. 1982. Dynamics of soil phosphorus in the rhizosphere of Pisum sativum. J. Indian Soc. Soil Sci. 30: 230–231

    Google Scholar 

  • Sharpley, A.N. 1985. Phosphorus cycling in unfertilized and fertilized agricultural soils. Soil Sci. Soc. Am. J.49: 905–911.

    Google Scholar 

  • Sharpley, A.N., and L.R. Ahuja. 1983. A diffusion interpretation of soil phosphorus desorption. Soil Sci. 135: 322–326

    CAS  Google Scholar 

  • Sharpley, A.N., L.R. Ahuja, M. Yamamoto, and R.G. Menzel. 1981. The kinetics of phosphorus desorption from soil. Soil Sci. Soc. Am. J.45: 493–496

    CAS  Google Scholar 

  • Sharpley, A.N., C.A. Jones, C. Gray, and C.V. Cole. 1984. A simplified soil and plant phosphorus model. II. Prediction of labile, organic and sorbed phosphorus. Soil Sci. Soc. Am. J.48: 805–809

    CAS  Google Scholar 

  • Sharpley, A.N., U. Singh, G. Uehara, and J. Kimble. 1989. Modeling soil and plant phosphorus dynamics in calcareous and highly weathered soils. Soil Sci. Soc. Am. J.53: 153–158

    CAS  Google Scholar 

  • Shaviv, A., and N. Sachar. 1989. A kinetic-mechanistic model of phosphorus sorption in calcareous soils. Soil Sci. 148: 172–178

    CAS  Google Scholar 

  • Shinde, B.N., P.A. Sarangamath, and S. Patnaik. 1978. Efficiency of HCl-and H2 S04 acidulated rock phosphates for rice (Oryza sativa L.) on acid soils. Plant Soil 50:575–584

    CAS  Google Scholar 

  • Sibanda, H.M., and S.D. Young. 1986. Competitive adsorption of humus acids and phosphate on goethite, gibbsite and two tropical soils. J. Soil Sci.37: 197–204

    CAS  Google Scholar 

  • Sibbesen, E. 1981. Some new equations to describe phosphate sorption by soils. J. Soil Sci.32: 67–74

    CAS  Google Scholar 

  • Sims, T.J., and B.G. Ellis. 1983a. Adsorption and availability of phosphorus following the application of limestone to an acid, aluminous soil. Soil Sci. Soc. Am. J.47: 888–893

    CAS  Google Scholar 

  • Sims, T.J., and B.G. Ellis. 1983b. Changes in phosphorus adsorption associated with aging of aluminum hydroxide suspensions. Soil Sci. Soc. Am. J.47: 912–916

    CAS  Google Scholar 

  • Singh, B.B., and M.A. Tabatabai. 1977. Effects of soil properties on phosphate sorption. Commun. Soil Sci. Plant Anal.8: 97–107

    CAS  Google Scholar 

  • Singhabutra, N., S. Arunin, and Y. Anuluxtipan. 1987. Experiment on two Rhizobium strains for inoculation into Sesbaniaspp. used as a green manure on the reclamation of saline soil. Paper presented at the 25th Ann. Tech. Mtg., Kasetsart Univ., Bangkok, pp. 25.

    Google Scholar 

  • Singhania, R.A., and N.N. Goswami. 1978. Transformation of applied phosphorus under simulated conditions of growing rice and wheat in a sequence. J. Indian Soc. Soil Sci.26: 193–197.

    CAS  Google Scholar 

  • Smeck, N.E. 1985. Phosphorus dynamics in soils and landscapes. Geoderma36: 185–199

    CAS  Google Scholar 

  • Smillie, G.W., D. Curtin, and J.K. Syers. 1987. Influence of exchangeable calcium on phosphate retention by weakly acid soils. Soil Sci. Soc. Am. J.51: 1169–1172

    CAS  Google Scholar 

  • Smyth, T.J., and P.A. Sanchez. 1982. Phosphate rock dissolution and availability in Cerrado soils as affected by phosphorus sorption capacity. Soil Sci. Soc. Am. J.46: 339–345

    CAS  Google Scholar 

  • Solis, P., and J. Torrent. 1989. Phosphate sorption by calcareous Vertisols and In- ceptisols of Spain. Soil Sci. Soc. Am. J.53: 456–459

    Google Scholar 

  • Sparks, D.L. 1986. Kinetics of reactions in pure and mixed systems. InD.L. Sparks (Ed.). Soil Physical Chemistry. C.R.C. Press, Florida, pp. 83–145

    Google Scholar 

  • Sparling, G.P., A.W. West, and K.N. Whale. 1985a. Interference from plant roots in the estimation of soil microbial ATP, C, N, and P. Soil Biol. Biochem.17: 275–278

    CAS  Google Scholar 

  • Sparling, G.P., K.N. Whale, and A.J. Ramsay. 1985b. Quantifying the contribution from the soil microbial biomass to the extractable P levels of fresh and air-dried soils. Aust. J. Soil Res.23: 613–621

    CAS  Google Scholar 

  • Speir, T.W., J.C. Cowling, G.P. Sparling, A.W. West, and D.M. Corderoy. 1986. Effects of microwave radiation on the microbial biomass, phosphatase activity and levels of extractable N and P in a low-fertility soil under pasture. Soil Biol. Biochem.18: 377–382

    CAS  Google Scholar 

  • Speir, T.W., and D.J. Ross. 1978. Soil phosphatase and sulfatase. InR.G. Burns (Ed.). Soil Enzymes. Acad. Press, London, pp. 197–250

    Google Scholar 

  • Sposito, G. 1980. Derivation of the Freundlich equation for ion exchange reactions in soils. Soil Sci. Soc. Am. J.44: 652–654

    CAS  Google Scholar 

  • Sposito, G. 1981. The operational definition of the zero-point of charge in soils. Soil Sci. Soc. Am. J.45: 292–297

    CAS  Google Scholar 

  • Sposito, G. 1982. On the use of the Langmuir equation in the interpretation of “adsorption” phenomena. II. The “two-surface” Langmuir equation. Soil Sci. Soc. Am. J.46: 1147–1152

    CAS  Google Scholar 

  • Sposito, G. 1984. The Surface Chemistry of Soils. Clarendon Press, Oxford

    Google Scholar 

  • Stephen, R.C. 1985. The agronomic value of products resulting from the partial acidulation of North Carolina phosphate rock with phosphoric acid. Fert. Res.8: 67–73

    CAS  Google Scholar 

  • Stephen, R.C., and L.M. Condron. 1986. An assessment of the agronomic efficiency of partially acidulated phosphate rock fertilizers. Fert. Res.10: 269–282

    CAS  Google Scholar 

  • Stevenson, F.J. 1986. The phosphorus cycle. In Cycles of Soil C, N, P, and S Micronutrients. John Wiley and Sons, New York, pp. 231–284

    Google Scholar 

  • Stewart, J.W.B., and F.B. McKercher. 1983. Phosphorus cycling in soils. Agronomic considerations. In Proc. 3rd Int. Congr. on Phosphorus Compounds (Brussels, Belgium). Institut Mondial du Phosphate, Casablanca, Morocco, pp. 551–565.

    Google Scholar 

  • Stewart, J.W.B., and H. Tiessen. 1987. Dynamics of soil organic phosphorus. Biogeochemistry4: 41–60.

    CAS  Google Scholar 

  • Stumm, W., R. Kummert, and L. Sigg. 1980. A ligand-exchange model for the adsorption of inorganic and organic ligands at hydrous oxide interfaces. Croat. Chem. Acta53: 291–312

    CAS  Google Scholar 

  • Syers, J.K, M.G. Browman, G.W. Smillie, and R.B. Corey. 1973. Phosphate sorption by soils evaluated by the Langmuir adsorption equation. Soil Sci. Soc. Am. Proc.37: 358–363

    CAS  Google Scholar 

  • Syers, J.K, and A.D. MacKay. 1986. Reactions of Sechura phosphate rock and single superphosphate in soil. Soil Sci. Soc. Am. J. 50:480–485

    CAS  Google Scholar 

  • Syers, J.K, A.D. MacKay, M.W. Brown, and L.D. Currie. 1986. Chemical and physical characteristics of phosphate rock minerals of varying reactivity. J. Sci. Food Agric.37: 1057–1064

    CAS  Google Scholar 

  • Syers, J.K, and L. Ru-kun. 1989. Inorganic reactions influencing phosphorus cycling. Paper presented at the Symp. on Phosphorus Requirements for Sustainable Agriculture in Asia and Oceania, 6–10 March 1989. International Rice Research Institute, Los Banos, Laguna, Philippines.

    Google Scholar 

  • Syers, J.K, R. Shah, and T.W. Walker. 1969. Fractionation of phosphorus in two alluvial soils and particle-size separates. Soil Sci. 103: 283–289

    Google Scholar 

  • Talibudeen, O. 1974. The nutrient potential of soils. Soils Ferts. 37: 41–45

    Google Scholar 

  • Tambe, K.N, and N.K. Savant. 1978. Kinetics of sorption of orthophosphate and pyrophosphate by ammoniated tropical soils. Commun. Soil Sci. Plant Anal. 9: 745–754

    CAS  Google Scholar 

  • Tarafdar, J.C, and A. Jungk. 1987. Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol. Fert. Soils3: 199–204

    CAS  Google Scholar 

  • Tarafdar, J.C, and A.B. Roy. 1981. Urease and phosphatases in the rhizosphere of different mesta (Hibiscus spp)genotypes. J. Indian Soc. Soil Sci. 29: 469–472

    CAS  Google Scholar 

  • Tate, K.R. 1984. The biological transformation of phosphorus in soil. Plant Soil76: 245–256

    CAS  Google Scholar 

  • Tate, K.R, and R.H. Newman. 1982. Phosphorus fractions of a climosequence of soils in New Zealand turrock grassland. Soil Biol. Biochem.14: 191–196

    CAS  Google Scholar 

  • Terman, G.L, and S.E. Allen. 1967. Response of corn to phosphorus in under- acidulated phosphate rock and rock-superphosphate fertilizer. J. Agric. Food Chem.15: 354–358

    CAS  Google Scholar 

  • Terman, G.L., S.E. Allen, and O.P. Engelstad. 1970. Response of paddy rice to rates and sources of applied phosphorus. Agron. J.62: 390–394

    CAS  Google Scholar 

  • Terman, G.L., E.C. Moreno, and G. Osborn. 1964. Acidulation of phosphate rock in soil. Soil Sci. Soc. Am. Proc.28: 104–107

    CAS  Google Scholar 

  • Tester, M., F.A. Smith, and S.E. Smith. 1985. Phosphate inflow into Trifolium sub-terraneumL: Effects of photon irradiance and mycorrhizal infection. Soil Biol. Biochem.17: 807–810

    Google Scholar 

  • Thiband, M.C., C. Morel, and J.C. Fardeau. 1988. Contribution of phosphorus issued from crop residues to plant nutrition. Soil Sci. Plant Nutr.34: 481–491

    Google Scholar 

  • Tian-ren, Y. 1985. Physical Chemistry of Paddy Soils. Science Press, Beijing, and Springer-Verlag, Berlin, Heidelberg, New York, Tokyo

    Google Scholar 

  • Tian-ren, Y., G.J.D. Kirk, and F.A. Chaudhury. 1989. Phosphorus chemistry in relation to water regime. Paper presented at the Symp. on Phosphorus Requirements for Sustainable Agriculture in Asia and Oceania, 6–10 March 1989. International Rice Research Institute, Los Banos, Laguna, Philippines

    Google Scholar 

  • Tiessen, H., J.W.B. Stewart, and J.R. Bettany. 1982. Cultivation effects on the amounts and concentration of carbon, nitrogen, and phosphorus in grassland soils. Agron. J.74: 831–835

    Google Scholar 

  • Tiessen, H., J.W.B. Stewart, and J.O. Moir. 1983. Changes in organic and inorganic phosphorus composition of two grassland soils and their particle size fractions during 60–90 years of cultivation. J. Soil Sci.34: 815–823

    CAS  Google Scholar 

  • Timmermann, F. 1972. Chemisch-physikalische Untersuchungen zur Bewertung von teilaufgeschlossenen Phosphaten. Landwirtsch. Forsch.25: 71–83

    CAS  Google Scholar 

  • Tinker, P.B. 1980. Role of rhizosphere microorganisms in phosphorus uptake. InF.E. Khasawneh, E.C. Sample, and E.J. Kamprath (Eds.). The Role of Phosphorus in Agriculture. Soil Sci. Soc. Am., Madison, Wisconsin, pp. 617–654

    Google Scholar 

  • Tiwari, V.N., A.N. Pathak, and L.K. Lehri. 1988. Manurial value of compost enriched with rock phosphate and microbial inoculants to greengram. J. Indian Soc. Soil Sci.36: 280–283

    Google Scholar 

  • Torrent, J. 1987. Rapid and slow phosphate sorption by Mediterranean soils: Effect of iron oxides. Soil Sci. Soc. Am. J.51: 78–82

    CAS  Google Scholar 

  • Tsutsuki, K., and F.N. Ponnamperuma. 1987. Behavior of anaerobic decomposition products in submerged soils. Soil Sci. Plant Nutr.33: 13–33

    CAS  Google Scholar 

  • Uwasawa, M., P. Sangtong, and W. Cholitkul. 1988a. Behavior of phosphorus in paddy soils of Thailand. I. Contents of inorganic, organic, and available soil phosphorus in relation to rice plant P-nutrition. Soil Sci. Plant Nutr. 34: 41–53

    Google Scholar 

  • Uwasawa, M., P. Sangtong, and W. Cholitkul. 1988b. Behavior of phosphorus in paddy soils of Thailand. II. Fate of phosphorus during rice cultivation in some representative soils. Soil Sci. Plant Nutr.34: 183–194

    CAS  Google Scholar 

  • Van Riemsdijk, W.H., L.J.M. Boumans, and F.A.M. de Haan. 1984. Phosphate sorption by soils: I. A model for phosphate reaction with metal-oxides in soil. Soil Sci. Soc. Am. J.48: 537–541

    Google Scholar 

  • Van Veen, J. A., and E.A. Paul. 1979. Conversion of bio volume measurements of soil organisms, grown under various moisture tensions, to biomass and their nutrient content. Applied Environ. Microbiol 37:686–692

    Google Scholar 

  • Veith, J.A. 1978. Formation of X-ray amorphous aluminum o-phosphate from precipitation and secondary precipitation. Z. Pflanzenernaehr. Bodenkd.141: 29–42

    CAS  Google Scholar 

  • Veith, J.A., and G. Sposito. 1977. Reactions of aluminosilicates, aluminum hydrous oxides, and aluminum oxide with o-phosphate: The formation of X-ray amorphous analogs of variscite and montebrasite. Soil Sci. Soc. Am. J.41: 870–876

    CAS  Google Scholar 

  • Verma, T.S, and B.R. Tripathi. 1982. Evaluation of chemical methods for the determination of available phosphorus in waterlogged Alfisols: 2. Suitability of soil test methods in relation to plant growth parameters. Soil Sci. 134: 294–299

    CAS  Google Scholar 

  • Vig, A.C, and G. Dev. 1984. Phosphorus adsorption characteristics of some acid and alkaline soils. J. Indian Soc. Soil Sci.32: 235–239

    CAS  Google Scholar 

  • Vijayachandran, P.K, and R.D. Harter. 1975. Evaluation of phosphorus adsorption by a cross section of soil types. Soil Sci. 119: 119–126

    Google Scholar 

  • Voroney, R.P, J.A. Van Vean, and E.A. Paul. 1981. Organic C dynamics in grassland soils. 2. Model validation and simulation of the long-term effects of cultivation and rainfall erosion. Can. J. Soil Sci.61: 211–224

    Google Scholar 

  • Wada, K. 1985. The distinctive properties of Andosols. Adv. Soil Sci.2: 173–229

    CAS  Google Scholar 

  • Wada, K, and N. Gunjigake. 1979. Active aluminum and iron and phosphate sorption in Ando soils. Soil Sci. 128: 331–336

    CAS  Google Scholar 

  • Wada, K, L. Xue-yuan, and P.W. Moody. 1989. Chemistry of adverse upland soils. Paper presented at the Symp. on Phosphorus Requirements for Sustainable Agriculture in Asia and Oceania, 6–10 March 1989, International Rice Research Institute, Los Banos, Laguna, Philippines.

    Google Scholar 

  • Webber, M.D. 1978. Effects of temperature and time on hydroxy aluminum phosphate. Soil Sci. 125: 107–114

    CAS  Google Scholar 

  • Welp, G, U. Herms, and G. Brümmer. 1983. Einfluß von Bodenreaktion, Redox- bedingungen und organischer Substanz auf die Phosphatgehalte der Bodenlösung. Z. Pflanzenernaehr. Bodenkd.146: 38–52

    CAS  Google Scholar 

  • Werner, W, and A. Solle. 1983. Untersuchungen zur Phosphatlöslichkeit und-wirkung von kalciniertem Aluminum-Calciumphosphat. Landwirtsch. Forsch.36: 308–319

    CAS  Google Scholar 

  • White, R.E, and A.T. Ayoub. 1983. Decomposition of plant residues of variable C/P ratio and the effect on phosphate availability. Plant Soil74: 163–173

    CAS  Google Scholar 

  • White, R.E, and A.W. Taylor. 1977. Effect of pH on phosphate adsorption and isotopic exchange in acid soils at low and high additions of soluble phosphate. J. Soil Sci.28: 48–61

    CAS  Google Scholar 

  • Willett, I.R. 1979. The effects of flooding for rice culture on soil chemical properties and subsequent maize growth. Plant Soil52: 373–383

    CAS  Google Scholar 

  • Willett, I.R. 1982. Phosphorus availability in soils subjected to short periods of flooding and drying. Aust. J. Soil Res.20: 131–138

    Google Scholar 

  • Willett, I.R. 1985. The reductive dissolution of phosphated ferrihydrite and strengite. Aust. J. Soil Res.23: 237–244

    CAS  Google Scholar 

  • Willett, I.R. 1986. Phosphorus dynamics in relation to redox processes in flooded soils. 13th Int. Congr. Soil Sci. Trans. (Hamburg)6: 748–755

    Google Scholar 

  • Willett, I.R. 1989. Causes and prediction of changes in extractable phosphorus during flooding. Aust. J. Soil Res.27: 45–54

    CAS  Google Scholar 

  • Willett, I.R, C.J. Chartres, and T.T. Nguyen. 1988. Migration of phosphate into aggregated particles of ferrihydrite. J. Soil Sci.39: 275–282

    CAS  Google Scholar 

  • Willett, I.R, and R.B. Cunningham. 1983. Influence of sorbed phosphate on the stability of ferric hydrous oxide under controlled pH and Eh conditions. Aust. J. Soil Res.21: 301–308

    CAS  Google Scholar 

  • Willett, I.R, and M.L. Higgins. 1978. Phosphate sorption by reduced and reoxidized rice soils. Aust. J. Soil Res.16: 319–326

    CAS  Google Scholar 

  • Willett, I.R, and M.L. Higgins. 1980. Phosphate sorption and extractable iron in soils during rice-upland crop rotations. Aust. J. Exp. Agric. Anim. Husb.20: 346–353

    Google Scholar 

  • Willett, I.R, W.A. Muirhead, and M.L. Higgins. 1978. The effects of rice growing on soil phosphorus immobilization. Aust. J. Exp. Agric. Anim. Husb.18: 270–275

    CAS  Google Scholar 

  • Williams, J.D.H., J.K. Syers, and T.W. Walker. 1967. Fractionation of soil inorganic phosphate by a modification of Chang and Jackson’s procedure. Soil Sci. Soc. Am. Proc.31: 736–739

    CAS  Google Scholar 

  • Wilson, M.A., and B.G. Ellis. 1984. Influence of calcium solution activity and surface area on the solubility of selected rock phosphates. Soil Sci. 138: 354–359

    CAS  Google Scholar 

  • Yuan, T. 1980. Adsorption of phosphate and water-extractable soil organic material by synthetic aluminum silicates and soils. Soil Sci. Soc. Am. J. 44:951–955

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Sanyal, S.K., De Datta, S.K. (1991). Chemistry of Phosphorus Transformations in Soil. In: Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 16. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3144-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3144-8_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7812-2

  • Online ISBN: 978-1-4612-3144-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics