Density Functional Calculations on Nitro Compounds (Geometries)

  • Patrick K. Redington
  • Jan W. Andzelm


It is becoming generally accepted that multiconfiguration self-consistent field (MCSCF) is the minimum level of ab initio molecular orbital theory required to accurately treat nitro compounds. A good example is nitromethane where SCF calculations incorrectly predict the ground state to be a triplet. MCSCF calculations are prohibitive except for small molecules. Density functional theory may offer a computationally viable alternative. A set of small nitro compounds including, HNO2, FNO2, HONO2, NH2NO2, and CH3NO2 is used for testing this hypothesis. Optimized geometries from density functional calculations are compared with SCF, MCSCF, and experimental results. The geometries from the density functional calculations are of MCSCF quality and they are obtained with much less computational effort.


Density Functional Theory Nitro Compound Density Functional Calculation Molecular Orbital Theory Reference Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andzelm, Jan and Wimmer, Erich, 1990. Cray Research, Inc., to be published in this volume.Google Scholar
  2. Cotton, F. Albert and Wilkson, Geoffrey, 1980. Advanced Inorganic Chemistry. John Wiley & Sons, New York, Fourth edition, page 244.Google Scholar
  3. Cox, A. Peter and Waring, Stephen, 1972. J. Chem. Soc, Faraday Trans., 2:1060–1071.Google Scholar
  4. Dupuis, M. and Spangler, D. and Wendoloski, J.J., 1980. GAMESS. National Resource for Computations in Chemistry Software Catalog, University of California: Berkley, CA. Program QG01.Google Scholar
  5. Fournier, R. and Andzelm, J. and Salahub, D.R., 1989. J. Chem. Phys.J. Chem. Phys., 90(11):6371–6377.Google Scholar
  6. Francl, M.M. and Pietro, W.J. and Hehre, W.J. and Binkley, J.S. and Gordon, M.S. and DeFree, D.J. and Pople, J.A., 1982. J. Chem. Phys.J. Chem. Phys., 77:3654.Google Scholar
  7. Frisch, M.J. and Binkley, J.S. and Schlegel, H.B. and Raghavachari, K. and Melius, C.F. and Martin, R.L. and Stewart, J.J.P. and Bobrowic, F.W. and Rohlfing, C.M. and Kahn, L.R. and Defree, D.J. and Seeger, R. and Whiteside, R.A. and Fox, D.J. and Fleuder, E.M. and Pople, J.A., 1984 Gaussian 86. Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh PA, 1984.Google Scholar
  8. Hariharan, P.C. and Pople, J.A., 1972. Chem. Phys. Lett.Chem. Phys. Lett., 66:217.Google Scholar
  9. Kleier, Daniel A. and Lipton, Mark A., 1984. J. Mol. Struct. (Theochem)J. Mol. Struct. (Theochem), 109:39–49.Google Scholar
  10. Marynick, Dennis S. and Ray, Asok K. and Fry, John L. and Kleier, Daniel A., 1984. J. Mol. Struct. (Theochem)J. Mol. Struct. (Theochem), 108:45–48.Google Scholar
  11. Marynick, Dennis S. and Ray, Asok K. and Fry, John L., 1985. Chem. Phys. Lett., 116(5):429–433.CrossRefGoogle Scholar
  12. McKee, Michael L., 1989. J. Phys. Chem., 93(21):7365–7369.CrossRefGoogle Scholar
  13. Mirri, A.M. and Cazzoli, G. and Ferretti, L., 1968. J. Chem. Phys., 49(6):2775–2780.CrossRefGoogle Scholar
  14. Redington, Patrick K., March 1990. MOLFIT Version 1.0. Hercules Physics Division Technical Report.Google Scholar
  15. Sadova, N.I. and Slepnev, G.E. and Tarasenko, N.A. and Zenkin, A.A. and Vilko, L.V. and Shishkov, I.F. and Pankrushev, Yu. A., 1977. Zh. Strukt. Khim, 18:865.Google Scholar
  16. Saxon, Roberta P. and Yoshimine, Megumu, 1989. J. Phys. Chem., 93(8):3130–3135.CrossRefGoogle Scholar
  17. Schmidt, M.W. and Boatz, J.A. and Baldridge, K.K. and Koseki, S. and Gordon, M.S. and Elbert, S.T. and Lam, B., 1987. QCPE Bulletin, 7:115.Google Scholar
  18. Stern, S. Alexander and Mullhaupt, J.T., 1960. Chem. Rev., 60:185–207.CrossRefGoogle Scholar
  19. Tannenbaum, Eileen and Myers, Rollie J. and Gwinn, William D., 1956. J. Chem. Phys, 25(1):42–47.CrossRefGoogle Scholar
  20. Tyler, J.K., 1963. J. Mol.Spect., 11:39–46.CrossRefGoogle Scholar
  21. Vosko, S.J. and Wilk, L. and Nusair, M., 1980. Can. J. Phys., 58:1200–1211.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • Patrick K. Redington
  • Jan W. Andzelm

There are no affiliations available

Personalised recommendations