Skip to main content

Density Functional Calculations on Nitro Compounds (Geometries)

  • Chapter
Density Functional Methods in Chemistry

Abstract

It is becoming generally accepted that multiconfiguration self-consistent field (MCSCF) is the minimum level of ab initio molecular orbital theory required to accurately treat nitro compounds. A good example is nitromethane where SCF calculations incorrectly predict the ground state to be a triplet. MCSCF calculations are prohibitive except for small molecules. Density functional theory may offer a computationally viable alternative. A set of small nitro compounds including, HNO2, FNO2, HONO2, NH2NO2, and CH3NO2 is used for testing this hypothesis. Optimized geometries from density functional calculations are compared with SCF, MCSCF, and experimental results. The geometries from the density functional calculations are of MCSCF quality and they are obtained with much less computational effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andzelm, Jan and Wimmer, Erich, 1990. Cray Research, Inc., to be published in this volume.

    Google Scholar 

  • Cotton, F. Albert and Wilkson, Geoffrey, 1980. Advanced Inorganic Chemistry. John Wiley & Sons, New York, Fourth edition, page 244.

    Google Scholar 

  • Cox, A. Peter and Waring, Stephen, 1972. J. Chem. Soc, Faraday Trans., 2:1060–1071.

    Google Scholar 

  • Dupuis, M. and Spangler, D. and Wendoloski, J.J., 1980. GAMESS. National Resource for Computations in Chemistry Software Catalog, University of California: Berkley, CA. Program QG01.

    Google Scholar 

  • Fournier, R. and Andzelm, J. and Salahub, D.R., 1989. J. Chem. Phys.J. Chem. Phys., 90(11):6371–6377.

    Google Scholar 

  • Francl, M.M. and Pietro, W.J. and Hehre, W.J. and Binkley, J.S. and Gordon, M.S. and DeFree, D.J. and Pople, J.A., 1982. J. Chem. Phys.J. Chem. Phys., 77:3654.

    Google Scholar 

  • Frisch, M.J. and Binkley, J.S. and Schlegel, H.B. and Raghavachari, K. and Melius, C.F. and Martin, R.L. and Stewart, J.J.P. and Bobrowic, F.W. and Rohlfing, C.M. and Kahn, L.R. and Defree, D.J. and Seeger, R. and Whiteside, R.A. and Fox, D.J. and Fleuder, E.M. and Pople, J.A., 1984 Gaussian 86. Carnegie-Mellon Quantum Chemistry Publishing Unit, Pittsburgh PA, 1984.

    Google Scholar 

  • Hariharan, P.C. and Pople, J.A., 1972. Chem. Phys. Lett.Chem. Phys. Lett., 66:217.

    Google Scholar 

  • Kleier, Daniel A. and Lipton, Mark A., 1984. J. Mol. Struct. (Theochem)J. Mol. Struct. (Theochem), 109:39–49.

    Google Scholar 

  • Marynick, Dennis S. and Ray, Asok K. and Fry, John L. and Kleier, Daniel A., 1984. J. Mol. Struct. (Theochem)J. Mol. Struct. (Theochem), 108:45–48.

    Google Scholar 

  • Marynick, Dennis S. and Ray, Asok K. and Fry, John L., 1985. Chem. Phys. Lett., 116(5):429–433.

    Article  CAS  Google Scholar 

  • McKee, Michael L., 1989. J. Phys. Chem., 93(21):7365–7369.

    Article  CAS  Google Scholar 

  • Mirri, A.M. and Cazzoli, G. and Ferretti, L., 1968. J. Chem. Phys., 49(6):2775–2780.

    Article  CAS  Google Scholar 

  • Redington, Patrick K., March 1990. MOLFIT Version 1.0. Hercules Physics Division Technical Report.

    Google Scholar 

  • Sadova, N.I. and Slepnev, G.E. and Tarasenko, N.A. and Zenkin, A.A. and Vilko, L.V. and Shishkov, I.F. and Pankrushev, Yu. A., 1977. Zh. Strukt. Khim, 18:865.

    CAS  Google Scholar 

  • Saxon, Roberta P. and Yoshimine, Megumu, 1989. J. Phys. Chem., 93(8):3130–3135.

    Article  CAS  Google Scholar 

  • Schmidt, M.W. and Boatz, J.A. and Baldridge, K.K. and Koseki, S. and Gordon, M.S. and Elbert, S.T. and Lam, B., 1987. QCPE Bulletin, 7:115.

    Google Scholar 

  • Stern, S. Alexander and Mullhaupt, J.T., 1960. Chem. Rev., 60:185–207.

    Article  CAS  Google Scholar 

  • Tannenbaum, Eileen and Myers, Rollie J. and Gwinn, William D., 1956. J. Chem. Phys, 25(1):42–47.

    Article  Google Scholar 

  • Tyler, J.K., 1963. J. Mol.Spect., 11:39–46.

    Article  CAS  Google Scholar 

  • Vosko, S.J. and Wilk, L. and Nusair, M., 1980. Can. J. Phys., 58:1200–1211.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Redington, P.K., Andzelm, J.W. (1991). Density Functional Calculations on Nitro Compounds (Geometries). In: Labanowski, J.K., Andzelm, J.W. (eds) Density Functional Methods in Chemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3136-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3136-3_27

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7809-2

  • Online ISBN: 978-1-4612-3136-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics