The Role of High Field Strength Cations in Silicate Melts

  • Paul C. Hess
Part of the Advances in Physical Geochemistry book series (PHYSICAL GEOCHE, volume 9)


Early models of melt structure focused almost exclusively on the role of the polymerized aluminosilicate tetrahedral framework. Solubility relations, trace element partitioning patterns, redox equilibria and the occurrence of liquid immiscibility among other properties were explained in the following way. A highly polymerized melt is a relatively inflexible structure with few non-bridging oxygen. High field strength cations cannot substitute into the tetrahedrally coordinated structure (TO), and have difficulty in achieving coordination polyhedra of oxygen within the network. This difficulty limits the solubility of the cations whose addition leads eventually to crystallization or to silicate liquid immiscibility.


Silicate Glass Silicate Liquid Rare Earth Element Redox Ratio Homogeneous Equilibrium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blander, M., and Pelton, A.D. (1987) Thermodynamic analysis of binary liquid silicates and prediction of ternary solution properties by modified quasi-chemical equations. Geochim. Cosmochim. Acta, 51, 85–96.Google Scholar
  2. Brandriss, M.E., and Stebbins, J.F. (1988) Effects of temperature on the structure of silicate liquids: 29Si NMR results. Geochim. Cosmochim. Acta, 52, 2659–2670.Google Scholar
  3. Brawer, S.A., and White, W.B. (1975) Raman spectroscopic investigation of the structure of silicate glasses I. The binary alkali silicates. J. Chem. Phys.; 63, 2421–2432.Google Scholar
  4. Brawer, S.A., and White, W.B. (1977) Raman spectroscopic study of hexavalent chromium in some silicate and borate glasses. Mat. Res. Bull., 12, 281–288.Google Scholar
  5. Bray, B.J. (1978) NMR studies of borates. In: Borate Glasses: Structure, Properties, Applications, edited by L.D. Pye, V.D. Frechette, and N.F. Kreidl Plenum Press, New York.Google Scholar
  6. Brearly, M., and Montana, A. (1989) The effect of CO2 on the viscosity of silicate liquids at high pressure. Geochim. Cosmochim Acta., 53, 2609–2616Google Scholar
  7. Bruckner, R., Chun, H.U., and Goretzki, H. (1978) Photoelectron spectroscopy (ESCA) on alkali silicate—and soda aluminosilicate glasses. Glastechn. Ber., 51, 1–7.Google Scholar
  8. Burnham, C.W., and Nekvasil, H. (1986) Equilibrium properties of granite pegmatite melts. Am. Mineral Jahns. Mem. 71, 239–263.Google Scholar
  9. Capabianco, C, and Navrotsky, A. (1982) Calorimetric evidence for the ideal mixing of silicon and germanium in glasses and crystals of sodium feldspar composition. Amer. Mineral., 67, 718–724.Google Scholar
  10. Chorlton, L.B., and Martin, R.F. (1978) The effect of boron on the granite solidus. Can. Mineral., 16, 239–244.Google Scholar
  11. Dean, K.J., and Wilkinson, G.R. (1983) Precision Raman investigations of the v 1 mode of vibration of SO4 −2, WO4 −2 and MoO4 −2 in aqueous solutions of different concentrations. J. Raman Spectr., 14, 130–134.Google Scholar
  12. DeJong, B.H.W.S., and Brown, G.E. (1980) Polymerization of silicate and aluminate tetrahedra in glasses, melts and aqueous solutions II. The network modifying effects of Mg+2, K+, Na+, Li+, OH, F, CI, H2O, CO2 and H3O+ on silicate polymers. Geochim. Cosmochim. Acta, 44, 1627–1642.Google Scholar
  13. DeJong, B.H.W.S., Keefer, K.D., Brown, G.E., and Taylor, C.M. (1981) Polymerization of silicate and aluminate tetrahedra in glasses, melts and aqueous solutions—III. Local silicon environments and internal nucleation in silicate glasses. Geochim. Cosmochim. Acta, 45, 1291–1308.Google Scholar
  14. Dell, W.J., Bray, P.J., and Xiao, S.Z. (1983) 11B NMR studies and structural modeling of Na2O-B2O5-SiO2 glasses of high soda content. J. Noncrystall. Solids, 58, 1–16.Google Scholar
  15. Dickenson, M.P., and Hess, P.C. (1981) Redox equilibria and the structural role of iron in aluminosilicate melts. Contrib. Mineral. Petrol., 78, 352–357.Google Scholar
  16. Dickenson, M.P., and Hess, P.C. (1986) The structural role of Fe+3, Ga+3, and Al+3 and homogeneous iron redox equilibria in K2O-Al2O3-Ga2O3-SiO2-Fe2O3-FeO melts. J. Noncrystall. Solids, 86, 303–310.Google Scholar
  17. Dickinson, J.E. (1984) Raman spectra of potassium titanate crystals and glass. Implications for the structural role of titanium in silicate melts. Geol Soc. Amer. Abstr., 16, 486.Google Scholar
  18. Dickinson, J.E., and Hess, P.C. (1981) Zircon saturation in lunar basalts and granite. Earth Planet. Sci. Lett., 57, 336–344.Google Scholar
  19. Dickinson, J.E., Hess, P.C., Dickenson, M.P., and Danckwerth, P.A. (1984) Aluminum distribution in alkali aluminosilicate glasses. Geol. Soc. Amer. Abstr., 16, 488.Google Scholar
  20. Dickinson, J.E., and Hess, P.C. (1985) Rutile solubility and Ti coordination in silicate melts. Geochim. Cosmochim. Acta, 49, 2289–2296.Google Scholar
  21. Douglas, R.W., Nath, P., and Paul, A. (1965) Oxygen ion activity and its influence on the redox equilibrium in glasses. Phys. Chem. Glasses, 6, 216–223.Google Scholar
  22. Dowty, E. (1987) Vibrational interactions of tetrahedra in silicate glasses and crystals: II Calculations on melilites, pyroxenes, silica polymorphs and feldspars. Phys. Chem. Mineral., 14, 122–138.Google Scholar
  23. Dumas, T., and Petiau, J. (1986) EXAFS study of titanium and zinc environments during nucleation in a cordierite glass. J. Noncrystall. Solids, 81, 201–220.Google Scholar
  24. Dupree, R., Holland, D., McMillan, P.W., and Pettifer, R.F. (1984) The structure of soda-silicate glasses: A MAS NMR study. J. Noncrystall. Solids, 68, 399–410.Google Scholar
  25. Dupree, R., Holland, D., Mortuza, M.G., Collins, J.A., and Lockyer, M.W.G. (1988) An MAS NMR study of network-cation coordination in phosphosilicate glasses. J. Noncrystall. Solids, 106, 403–407.Google Scholar
  26. Eggler, D.H., and Rosenhauer, M. (1978) Carbon dioxide in silicate melts: II Solubilities of CO2 and H2O in CaMgSi2O6 (diopside) liquids and vapors at pressure to 40 kb. Am. J. Sci., 278, 64-94.Google Scholar
  27. Ellison, A.J., and Hess, P.C. (1986) Solution behavior of +4 cations in high silica melts: Petrologic and geochemical implications. Contrib. Mineral. Petrol., 94, 343–351.Google Scholar
  28. Ellison, A.J., and Hess, P.C. (1987) Raman spectroscopic studies of quenched glasses of the system 10 K2O- X R2O3-50 SiO2 (R = La, Gd, Yb; X = 0.2, 5, 10). Mat. Res. Soc., p. 302.Google Scholar
  29. Ellison, A.J., and Hess, P.C. (1988) Peraluminous and peralkaline effects upon monazite solubility in high silica liquids. EOS, 69, 498.Google Scholar
  30. Ellison, A.J., and Hess, P.C. (1989b) Solution mechanisms of Period V cations in potassium silicate glasses: Inferences from Raman spectra. EOS, 70, 487.Google Scholar
  31. Ellison, A.J., and Hess, P.C. (1989c) Solution properties of rare earth elements in silicate melts: Inferences from immiscible liquids. Geochim. Cosmochim. Acta, 53,Google Scholar
  32. Ellison, A.E., and Hess, P.C. (1990) Lanthanides in silicate glasses: A vibrational spectroscopic study. J. Geophys. Res., 95, 15, 717–15, 726.Google Scholar
  33. Ellison, A.J., and Hess, P.C. (1991) Vibrational spectra of high-silica glasses of the system KO-SiO-LaO. J. Noncrystall. Solids, 127, 247–259.Google Scholar
  34. Englehardt, G., Nofz, M., Forkel, K., Wihsmann, F.G., Magi, M., Samoson, A., and Lippmaa, E. (1985) Structural studies of calcium aluminosilicate glasses by high resolution solid state 29Si and 27Al magic angle spinning nuclear magnetic resonance. Phys. Chem. Glasses, 26, 157–165.Google Scholar
  35. Felsche, J. (1973) The crystal chemistry of the rare earth silicates. In Structure and Bonding, Vol 13, edited by J.D. Donitz, et al., pp. 100–197, Springer-Verlag, New York.Google Scholar
  36. Fine, G., and Stolper, E. (1985) The speciation of carbon dioxide in sodium aluminosilicate glasses. Contrib. Minerol Petrol., 91, 105–112.Google Scholar
  37. Fleet, M.E., Herzberg, C.T., Henderson, G.S., Crozier, E.P., Osborne, M.D., and Scarfe, CM. (1984) Coordination of FeGa and Ge in high pressure glasses by Mössbauer, Raman and X-ray spectroscopy and geological implications. Geochim. Cosmochim. Acta, 48, 1455–1466.Google Scholar
  38. Fogel, R.A., and Rutherford, M.J. (1990) The solubility of carbon dioxide in rhyolitic melts: A quantitative FTIR study. Amer. Mineral., 75, 1311–1326.Google Scholar
  39. Fukumi, K., and Sakka, S. (1988) Coordination state of Nb+5 ions in silicate and gallate glasses as studied by Raman spectroscopy. J. Mat. Sci., 23, 2819–2823.Google Scholar
  40. Furukawa, T., and White, W.B. (1980) Raman spectroscopic investigation of the structure and crystallization of binary alkali germanate glasses. J. Mat. Sci., 15, 1648–1662.Google Scholar
  41. Furukawa, T., and White, W.B. (1979) Structure and crystallization of glasses in Li2Si2O5-TiO2 system determined by Raman spectroscopy. Phys. Chem. Glasses, 20, 69–80.Google Scholar
  42. Galachov, F.Ya., Aver’yanov, V.I., Vavilonova, V.T., Areshev, M.P., and Makeeva, N.M. (1983) Metastable liquid phase separation in MgO (CaO)-Ga2O3-SiO2 systems. Soviet J. Glass Phys. Chem., 8, 104–110.Google Scholar
  43. Galachov, F.Ya., Aver’yanov, V.I., Vavilonova, V.T., and Areshev, M.P. (1976a) The metastable liquid phase separation region in the MgO-Al2O3-SiO2 system. Soviet J. Glass Phys. Chem., 2, 405–408.Google Scholar
  44. Galachov, F.Ya., Aver’yanov, V.I., Vailonova, V.T., and Areshev, M.P. (1976b) The metastable two liquid region in the Ga2O3-Al2O3-SiO2 and Al2O3-SiO2 system. Soviet J. Glass Phys. Chem., 2, 127–132.Google Scholar
  45. Gan, H., and Hess, P.C. (1989) Phosphorus effects upon the structure of potassium aluminosilicate glass: Inference from Raman and NMR, EOS, 70, 1375Google Scholar
  46. Gazzoni, G. (1973) Al-Ga and Si-Ge diadochy in synthetic BaAl2Si2O8 and SrAl2Si2O8. Z. Krist., 137, 24–34.Google Scholar
  47. Geisinger, K.L., Gibbs, C.V., and Navrotsky, A. (1985) A molecular orbital study of bond length and angle variations in framework structures. Phys. Chem. Mineral, 11, 266–283.Google Scholar
  48. Geisinger, K.L., Oestrike, R., Navrotsky, A., Turner, G.L., and Kirkpatrick, R.J. (1988) Thermochemistry and structure of glasses along the join NaAlSi3O8-NaBSi3O8. Geochim. Cosmochim. Acta, 52, 2405–2414.Google Scholar
  49. Ghiorso, M.S., Charmichael, I.S.E., Rivers, M.L., and Sack, R.O. (1983) The Gibbs free energy of mixing of natural silicate liquids; an expanded regular solution approximation for the calculation of magmatic intensive variables. Contrib. Mineral Petrol., 84, 107–145.Google Scholar
  50. Gibbs, G.V. (1982) Molecules as models for bonding in silicates. Amer. Mineral., 67, 421–450.Google Scholar
  51. Greegor, R.B., Lytle, F.W., Sandstrom, D.R., Wong, J., and Schultz, P. (1983) Investigation of TiO2-SiO2 glasses by x-ray absorption spectroscopy. J. Nonerystall Solids, 55, 27–43.Google Scholar
  52. Green, T.H., and Watson, E.B. (1982) Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular reference to “orogenic” rock series. Contrib. Mineral. Petrol., 79, 96–105.Google Scholar
  53. Gwinn, R. and Hess, P.C. (1989) Iron and titanium solution properties in peraluminous and peralkaline rhyolitic liquids. Contrib. Mineral. Petrol., 101, 326–338.Google Scholar
  54. Hallas, E., Haubenreissen, U., Haeriert, M., and Mueller, D. (1983) NMR-Untersuchungen an Na2O-Al2O3-SiO2 Glaesern mit Hilfe der Chemischen Verschiebung von 27A1-Kerner. Glastechn. Ber., 56, 63–70.Google Scholar
  55. Hart, S.R., and Davis, K.E. (1978) Nickel partitioning between olivine and silicate liquids. Earth Planet. Sci. Lett., 40, 203–220.Google Scholar
  56. Hess, P.C. (1971) Polymer model of silicate melts. Geochim. Cosmochim. Acta, 35, 289–306.Google Scholar
  57. Hess, P.C. (1977) Structure of silicate melts. Can. Mineral., 15, 162–178.Google Scholar
  58. Hess, P.C. (1980) Polymerization model for silicate melts. In: Physics of Magmatic Processes edited by R.B. Hargraves, pp. 1–48.Google Scholar
  59. Hess, P.C, Rutherford, M.J., Guillemette, R.N, Ryerson, F.J, and Tuchfield, H.A. (1975) Residual products of fractional crystallization of lunar magmas: an experimental study. Proc. 6th Lunar Sci. Conf., 1, 895–909.Google Scholar
  60. Hess, P.C, and Wood, M.I. (1982) Aluminum coordination in metaluminous and peralkaline silicate melts. Contrib. Mineral. Petrol., 81, 103–112.Google Scholar
  61. Honada, T. and Soga, N. (1980) Coordination of titanium in silicate glasses. J. Nonerystall. Solids, 38, 105–110.Google Scholar
  62. Jeffes, J.H.E. (1975) The thermodynamics of polymeric melts and slags. Silicates Ind., 40, 325–340.Google Scholar
  63. Johnston, W.D. (1965) Oxidation-reduction equilibria in molten Na2O-2SiO2 glass. J. Am. Ceram. Soc., 48, 184–190.Google Scholar
  64. Konijnendijk, W.L. (1975) The structure of borosilicate glasses. Philips. Res. Repts., Suppl. 1, Eindhoven.Google Scholar
  65. Krol, D.M., and Smets, B.M.J. (1984) Group III ions in sodium silicate glass. Part 2: Raman study. Phys. Chem. Glasses, 25, 119–125.Google Scholar
  66. Kroll, H., Phillips, M.W., and Pentinghaus, H., (1978) The structure of the ordered synthetic feldspars SrGa2Si2O8,BaGa2Si2O8 and BaGa2Ge2O8. Acta Crystall., B34, 354–365.Google Scholar
  67. Kushiro, I. (1975) On the nature of silicate melts and its significance in magma genesis: regularities in the shift of liquid boundaries involving olivine, pyroxene, and silica minerals. Amer. J. Sci., 275, 411–431.Google Scholar
  68. Lacy, E.D. (1963) Aluminum in glasses and in melts. Phys. Chem. Glasses, 4, 234–238.Google Scholar
  69. Lacy, E.D. (1965) A statistical model of polymerization/depolymerization relationships in silicate melts and glasses. Phys. Chem. of Glasses, 6, 171–180.Google Scholar
  70. Levin, E.M., Robbins, C.R., and McMurdie, H.F. (1964) Phase diagrams for ceramists. Amer. Ceram. Soc.Google Scholar
  71. Levin, E.M., Robbins, C.R., and McMurdie, H.F. (1969) Phase diagrams for ceramists, Amer. Ceram. Soc. (Suppl.)Google Scholar
  72. Liebau, F. (1985) Structural Chemistry of silicates. Springer-Verlag, New York.Google Scholar
  73. London, D. (1987) Internal differentiation of rare element pegmatites: Effects of boron, phosphorus and fluorine. Geochim. Cosmochim. Acta, 51, 403–420.Google Scholar
  74. London, D., Hervig, R.H., and Morgan, G.B. VI (1988) Melt-vapor solubilities and element partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 MPa. Contrib. Mineral. Petrol., 99, 360–373.Google Scholar
  75. London, D., Morgan, G.B. VI, and Hervig, R.L. (1989) Vapor-undersaturated experiments with Macusani glass + H2O at 200 MPa and the internal differentiation of granitic pegmatites. Contrib. Mineral. Petrol., 102, 1–17.Google Scholar
  76. Lux, G. (1987) The behavior of noble gases in silicate liquids: Solution, diffusion, bubbles and surface effects, with applications to natural samples. Geochim. Cosmochim. Acta, 51, 1549–1560.Google Scholar
  77. Manning, D.A.C. (1981) The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 Kb. Contrib. Mineral Petrol., 76, 206–215.Google Scholar
  78. Manning, D.A.C, and Pichavant, M. (1983) The role of fluorine and boron in the generation of granitic melts. In: Migmatites, Melting and Metamorphism, edited by M.P. Atherton and CD. Gribble. Shiva Publishing, Lmt.Google Scholar
  79. Masson, C.R., Jamieson, W.D., and Mason, F. (1974) Ionic constitution of metallurgical slags. In: The Richardson Conference on Physical Chemistry of Process Metallurgy. IMM, London.Google Scholar
  80. Matson, D.W., Sharma, S.K., and Philpotts, J.A. (1983) The structure of high-silica alkali-silicate glasses—a Raman spectroscopic study. J. Nonerystall. Solids, 58, 323–352.Google Scholar
  81. Matson, D.W., and Sharma, S.K. (1985) Structures of the sodium alumino—and gallo-silicate glasses and their germanium analogs. Geochim. Cosmochim. Acta, 49, 1913–1924.Google Scholar
  82. McKay, G., and Wagstaff, J. (1985) Ilmenite partitioning revisited: Confirmation of zirconium results for high-Ti mare basalt. Lunar Planet. Sci., XVI, 542–543.Google Scholar
  83. McKeown, D.A, Waychunas, G.A., and Brown, G.E, Jr. (1985) EXAFS study of the coordination environment of aluminum in series of silica-rich glasses and selected minerals with the Na2O-Al2O3-SiO2 system. J. Noncrystall. Solids, 74, 349–371.Google Scholar
  84. McMillan, P.F. (1984) Structural studies of silicate glasses and melts—applications and limitations of Raman spectroscopy. Amer. Mineral., 69, 622–644.Google Scholar
  85. McMillan, P.F., and Hoffmeister, A.M. (1988) Infrared and Raman spectroscopy. In: Spectroscopic Method in Mineralogy and Geology, edited by F.C. Hawthorne Reviews in Mineral., 18, 99–160.Google Scholar
  86. Michel, G., and Cahay, R. (1986) Raman spectroscopic investigations on the chromium VI equilibria: Part 2—Species present, influence of ionic strength and Cr2O4 −2-Cr2O7 −2 equilibrium constant. J. Raman Spectrosc, 17, 79–82.Google Scholar
  87. Montel, J.-C. (1986) Experimental determination of the solubility of Ce-monazite in SiO2-Al2O3-K2O-Na2O melts at 800°C, 2 kbar, under H2O-saturated conditions. Geology, 14, 659–662.Google Scholar
  88. Müller, D., Berger, G., Grunze, I., Ludwig, G., Hallas, E., and Haubenreisser, U. (1983) Solid state high-resolution 27A1 nuclear magnetic resonance studies of the structure of CaO-Al2O3-P2O5 glasses. Phys. Chem. Glasses, 24, 37–42.Google Scholar
  89. Mysen, B.O., and Virgo, D. (1980) Trace element partitioning and melt structure: an experimental study at 1 atm pressure. Geochim. Cosmochim. Acta, 44, 1917–1930.Google Scholar
  90. Mysen, B.O., Ryerson, F.J., and Virgo, D. (1980) The influence of TiO2 on the structure and derivative properties of silicate melts. Amer. Mineral., 65, 1150–1165.Google Scholar
  91. Mysen, B.O., Ryerson, F.J., and Virgo, D. (1981) The structural role of phosphorus in silicate melts. Amer. Mineral., 66, 106–117.Google Scholar
  92. Mysen, B.O., Virgo, D., and Seifert, F.A. (1984) Redox equilibria of iron in alkaline earth silicate melts: Relationships between melt structure, oxygen, fugacity, temperature, and properties of iron-bearing silicalc liquids. Amer. Mineral., 69, 834–848.Google Scholar
  93. Mysen, B.O. (1988) Structure and Properties of Silicate Melts. Elsevier, New York.Google Scholar
  94. Naski, G.C., and Hess, P.C. (1985) SnO2 solubility: Experimental results in peraluminous and peralkaline high silica glasses. EOS (ABS), 66, 412.Google Scholar
  95. Navrotsky, A., Geisinger, K.L., McMillan, P., and Gibbs, G.V. (1985) The tetrahedral framework in glasses and melts—inferences from molecular orbital calculations and implications for structure, thermodynamics, and physical properties. Phys. Chem. Mineral., 11, 284–298.Google Scholar
  96. Nelson, C., Furukawa, T., and White, W.B. (1983) Transition metal ions in glasses: Network modifiers or quasi-molecular complexes. Mat. Res. Bull., 18, 959–966.Google Scholar
  97. Nelson, C, and Tallant, D.R. (1984) Raman studies of sodium silicate glasses with low phosphate contents. Phys. Chem. Glasses, 25, 31–38.Google Scholar
  98. Nelson, C, Tallant, D.R., and Schelnutt, J.A. (1984) Raman spectroscopic study of scandium in sodium silicate glasses. J. Noncrystall Solids, 68, 87–98.Google Scholar
  99. Ohtani, E., Taulelle, F., and Angell, C.A. (1985) Al+3 coordination changes in liquid silicates under pressure. Nature, 314, 78–81.Google Scholar
  100. Oldfield, E., and Kirkpatrick (1985) High-resolution nuclear magnetic resonance of inorganic solids. Science, 227, 1537–1544.Google Scholar
  101. Pankratz, L.B., Stuve, J.M., and Gokcen, N.A. (1984) Thermodynamic Data for Mineral Technology. Bureau of Mines, Bull. 677, U.S. Dept. of the Interior.Google Scholar
  102. Park, M.J., Kim, K.S., and Bray, P.J. (1979) The determination of the structures of compounds and glasses in the system MgO-B2O3 using 11B NMR. Phys. Chem. Glasses, 20, 31–34.Google Scholar
  103. Paul, A., and Douglas, R.W. (1965) Ferrous-ferric equilibrium in binary alkali silicate glasses. Phys. Chem. Glasses, 6, 207–211.Google Scholar
  104. Philpotts, A.R. (1982) Composition of immiscible liquids in volcanic rocks. Contrib. Mineral. Petrol., 80, 201–218.Google Scholar
  105. Pichavant, M. (1981) An experimental study of the effect of boron on water-saturated haplogranite at 1 kbar pressure. Geological Applications. Contrib. Mineral. Petrol., 76, 430–439.Google Scholar
  106. Pichavant, M. (1987) Effects of B and H2O on liquidus phase relations in the haplogranite system at 1 kbar. Amer. Mineral. 72, 1056–1070.Google Scholar
  107. Pyare, R., and Nash, P. (1982) Stannous-stannic equilibrium in molten binary alkali silicate and ternary silicate glasses. J. Amer. Ceram. Soc., 65, 549–554.Google Scholar
  108. Quick, J.E., James, O.B., and Albee, A.L. (1981) Petrology and petrogenesis of lunar breccia 12013. Proc. Lunar Planet. Sci., 12, 117–172.Google Scholar
  109. Richet, R., and Bottinga, Y. (1986) Thermochemical properties of silicate glasses and liquids: A review. Rev. Geophysics, 24, 1–25.Google Scholar
  110. Risbud, S.H., Kirkpatrick, R.J., Taglialavore, A.P. and Montez, B. (1987) Solid state NMR evidence for 4-, 5-, and 6-fold aluminum sites in roller-quenched SiO2-Al2O3 glasses. J. Amer. Cer. Soc., 70, C-10–C-12.Google Scholar
  111. Robie, R.A., Heminway, B.S. and Fisher, J.R. (1978) Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Pressure. U.S. Geological Survey Bull. 1452.Google Scholar
  112. Roedder, E., and Weiblen, P.W. (1972) Petrology of melt inclusions, Apollo 11 and Apollo 12 and terrestrial equivalents. Proc. 2nd Lunar Sci. Conf. 1, 507–528.Google Scholar
  113. Roy, B.N., and Navrotsky, A. (1984) Thermochemistry of charge coupled substitutions in silicate glasses: The systems Mn+ 1/n A1O2-SiO2 (M = Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Pb). J. Amer. Ceram. Soc., 67, 606–610.Google Scholar
  114. Rutherford, M.J., Hess, P.C., and Daniel, G.H. (1974) Experimental liquid line of descent and liquid immiscibility for basalt 70017. Proc 5th Lunar Sci. Conf., 1, 569–583.Google Scholar
  115. Ryerson, F.J. (1985) Oxide solution mechanisms in silicate melts: Systematic variations in the activity coefficient of SiO2. Geochim. Cosmochim. Acta, 49, 637–649.Google Scholar
  116. Ryerson, F.J., and Hess, P.C. (1978) Implications of liquid-liquid distribution coefficients to mineral-liquid partitioning. Geochim. Cosmochim. Acta, 42, 921–932.Google Scholar
  117. Ryerson, F.J. and Hess, P.C. (1980) The role of P205 in silicate melts. Geochim. Cosmochim., Acta, 44, 611–624.Google Scholar
  118. Schneider, E., Stebbins, J.F., and Pines, A. (1987) Speciation and local structure in alkali and alkaline earth silicate glasses: constraints from 29Si NMR spectroscopy. J. Noncrystall. Solids, 89, 371–383.Google Scholar
  119. Schramm, CM., DeJong, B.H.W.S., and Parziale, V.E. (1984) 29Si magic angle spinning NMR study on local silicon environments in amorphous and crystalline lithium silicates. J. Amer. Chem. Soc., 106, 4396–4403.Google Scholar
  120. Schreiber, H.D. (1987) An electromotive series of redox couples in silicate melts: A review and application to geochemistry. J. Geophys. Res., 92, 9225–9232.Google Scholar
  121. Schreiber, H.D., and Balazs, G.B. (1981) Uranium redox equilibria in interactions with chromium in molten silicates. Lunar Planet. Sci. XII, 940–942.Google Scholar
  122. Schreiber, H.D., Merkel, R.C., Schreiber, V.L., and Balazs, G.B. (1987) Mutual interactions of redox couples via electron exchange in silicate melts: Models for geochemical melt systems. J. Geophys. Res., 92, 9233–9245.Google Scholar
  123. Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Crystall., A32, 751–767.Google Scholar
  124. Sharma, S.K., Matson, D.W., Philpotts, J.A. and Roush, T.L. (1984) Raman study of the structure of glasses along the join SiO2-GeO2. J. Non. Crystal. Solids., 68, 99–114.Google Scholar
  125. Simpson, D.R. (1977) Aluminum phosphate variants of feldspar. Amer. Mineral., 62, 351–355.Google Scholar
  126. Smets, B.M.J., and Krol, D.M. (1984) Group III ions in sodium silicate glass. Part 1. X-ray photoelectron spectroscopy study. Phys. Chem. Glasses, 25,113–118.Google Scholar
  127. Stebbins, J.F. (1988) Effects of temperature and composition on silicate glass structure and dynamics: 29Si NMR results. J. Noncrystall. Solids, 106, 359–369.Google Scholar
  128. Stolper, E. (1982) Water in silicate glasses: An infrared spectroscopic study. Contrib. Mineral. Petrol., 81, 1–17.Google Scholar
  129. Stolper, E., Fine, G., Johnson, T. and Newman, S., (1987) Solubility of carbon dioxide in albitic melt. Amer. Mineral., 72, 1071–1085.Google Scholar
  130. Stolper, E., and Holloway, J.R. (1988) Experimental determination of the solubility of carbon dioxide in molten basalt at low pressure. Earth Planet. Sci. Lett., 87, 397–408.Google Scholar
  131. Sweet, J.R., and White, W.B. (1969) Study of sodium silicate glasses and liquids infrared spectroscopy. Phys. Chem. Glasses, 10, 246–251.Google Scholar
  132. Tardy, Y., and Vieillard, P. (1977) Relationships among Gibbs free energies of formation of phosphates, oxides and aqueous ions. Contrib. Mineral. Petrol., 63, 75–88.Google Scholar
  133. Taylor, M., and Brown, G.E. Jr. (1979) Structure of mineral glasses: I-The feldspar glasses NaAlSi3O8, KAlSi3O8 and CaAl2Si2O8. Geochim. Cosmochim. Acta, 43, 61–75.Google Scholar
  134. Tewhey, J.D., and Hess, P.C. (1979) Silicate immiscibility and thermodynamic mixing properties of liquids in the CaO-SiO2 system. Phys. Chem. Glasses, 20, 41–53.Google Scholar
  135. Varshal, B.G. (1975) Liquation phenomena and the structure of glasses in three component aluminosilicate systems. Soviet J. Glass Phys. Chem., 1, 40–43.Google Scholar
  136. Verweij, H. (1981) Raman study of arsenic-containing potassium silicate glasses. J. Amer. Ceram. Soc., 64, 493–498.Google Scholar
  137. Virgo, D., Mysen, B.O., and Kushiro, I. (1979) Anionic constitution of silicate melts quenched at 1 atm from Raman spectroscopy. Science, 208, 1371–1373.Google Scholar
  138. Visser, W., and Koster van Groos, A.F. (1979a) Effect of pressure on liquid immiscibility in the system K2O-FeO-Al2O3-SiO2-P2O5. Amer. J. Sci., 279, 1160–1175.Google Scholar
  139. Visser, W., and Koster van Groos, A.F. (1979b) Effects of P2O5 and TiO2 on the liquid — liquid equilibria in the system K2O-FeO-Al2O3-SiO2. Amer. J. Sci., 279, 970–989.Google Scholar
  140. Watson, B.E. (1976) Two liquid partition coefficients: Experimental data and geochemical implications. Contrib. Mineral. Petrol., 56, 119–134.Google Scholar
  141. Watson, E.B. (1977a) Partitioning of manganese between forsterite and silicate liquid. Geochim. Cosmochim. Acta, 41, 1363–1374.Google Scholar
  142. Watson, E.B. (1979) Zircon saturation in felsic liquids: experimental data and applications to trace element geochemistry. Contrib. Mineral. Petrol., 70,407–419.Google Scholar
  143. Watson, E.B., and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects on a variety of crystal magma types. Earth. Planet. Sci. Len., 64, 295–304.Google Scholar
  144. Waychunas, G.A., and Brown, G.E, Jr. (1984) Application of EXAFS and XANES spectrosocpy to problems in mineralogy and geochemistry. In: EXAFS and Near Edge Structure III, edited by K.O. Hodgson, et al. Springer, Proceedings of Physics 2, Springer-Verlag, New York.Google Scholar
  145. Wendlandt, R.F, and Harrison, W.J. (1979) Rare earth partitioning between immiscible carbonate and silicate liquids and CO2 vapor: Results and implications for the formation of light rare-earth enriched rocks. Contrib. Mineral. Petrol., 69, 409–419.Google Scholar
  146. Williams, Q, and Jeanloz, R. (1988) Spectroscopic evidence for pressure induced coordination changes in silicate glasses and melts. Science, 239, 902–905.Google Scholar
  147. Wong, J., and Angell, C.A. (1976) Glass Structure By Spectroscopy. Marcel Dekker, Inc., 864 pp.Google Scholar
  148. Wood, M.I., and Hess, P.C. (1980) The structural role of A1203 and Ti02 immiscible silicate liquids in the system SiO2-MgO-CaO-FeO-TiO2-Al2O3. Contrib. Mineral. Petrol., 72, 319–328.Google Scholar
  149. Wyllie, P.J. (1980) The origin of kimberlite. J. Geophys. Res., 85, 6902–6910.Google Scholar
  150. Yarker, C.A., Johnson, P.A.V., Wright, A.C., Wong, J., Greegor, R.B., Lytle, F.W., and Sinclare, R.N. (1986) Neutron diffraction and EXAFS evidence for TiO5 units in vitreous K2O-TiO2-2SiO2. J. Noncrystall. Solids, 79, 117–136.Google Scholar
  151. Yin, CD., Okuno, M., Morikawa, H., and Maruma, F. (1983) Structure analysis of MgSiO3 glass. J. Noncrystall. Solids, 55, 131–141.Google Scholar
  152. Yoshimaru, K., Veda, Y., Morinaga, K. and Yanagase, Y. (1984) Glass forming region and Ti+4 coordination number in R2O-TiO2 (Rb,K,Na) and BaO-TiO2 binary glasses. J. Ceram. Soc. Jap., 92, 17–22.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Paul C. Hess

There are no affiliations available

Personalised recommendations