Skip to main content

The Role of High Field Strength Cations in Silicate Melts

  • Chapter

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 9))

Abstract

Early models of melt structure focused almost exclusively on the role of the polymerized aluminosilicate tetrahedral framework. Solubility relations, trace element partitioning patterns, redox equilibria and the occurrence of liquid immiscibility among other properties were explained in the following way. A highly polymerized melt is a relatively inflexible structure with few non-bridging oxygen. High field strength cations cannot substitute into the tetrahedrally coordinated structure (TO), and have difficulty in achieving coordination polyhedra of oxygen within the network. This difficulty limits the solubility of the cations whose addition leads eventually to crystallization or to silicate liquid immiscibility.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Blander, M., and Pelton, A.D. (1987) Thermodynamic analysis of binary liquid silicates and prediction of ternary solution properties by modified quasi-chemical equations. Geochim. Cosmochim. Acta, 51, 85–96.

    CAS  Google Scholar 

  • Brandriss, M.E., and Stebbins, J.F. (1988) Effects of temperature on the structure of silicate liquids: 29Si NMR results. Geochim. Cosmochim. Acta, 52, 2659–2670.

    CAS  Google Scholar 

  • Brawer, S.A., and White, W.B. (1975) Raman spectroscopic investigation of the structure of silicate glasses I. The binary alkali silicates. J. Chem. Phys.; 63, 2421–2432.

    CAS  Google Scholar 

  • Brawer, S.A., and White, W.B. (1977) Raman spectroscopic study of hexavalent chromium in some silicate and borate glasses. Mat. Res. Bull., 12, 281–288.

    CAS  Google Scholar 

  • Bray, B.J. (1978) NMR studies of borates. In: Borate Glasses: Structure, Properties, Applications, edited by L.D. Pye, V.D. Frechette, and N.F. Kreidl Plenum Press, New York.

    Google Scholar 

  • Brearly, M., and Montana, A. (1989) The effect of CO2 on the viscosity of silicate liquids at high pressure. Geochim. Cosmochim Acta., 53, 2609–2616

    Google Scholar 

  • Bruckner, R., Chun, H.U., and Goretzki, H. (1978) Photoelectron spectroscopy (ESCA) on alkali silicate—and soda aluminosilicate glasses. Glastechn. Ber., 51, 1–7.

    Google Scholar 

  • Burnham, C.W., and Nekvasil, H. (1986) Equilibrium properties of granite pegmatite melts. Am. Mineral Jahns. Mem. 71, 239–263.

    CAS  Google Scholar 

  • Capabianco, C, and Navrotsky, A. (1982) Calorimetric evidence for the ideal mixing of silicon and germanium in glasses and crystals of sodium feldspar composition. Amer. Mineral., 67, 718–724.

    Google Scholar 

  • Chorlton, L.B., and Martin, R.F. (1978) The effect of boron on the granite solidus. Can. Mineral., 16, 239–244.

    CAS  Google Scholar 

  • Dean, K.J., and Wilkinson, G.R. (1983) Precision Raman investigations of the v 1 mode of vibration of SO4 −2, WO4 −2 and MoO4 −2 in aqueous solutions of different concentrations. J. Raman Spectr., 14, 130–134.

    CAS  Google Scholar 

  • DeJong, B.H.W.S., and Brown, G.E. (1980) Polymerization of silicate and aluminate tetrahedra in glasses, melts and aqueous solutions II. The network modifying effects of Mg+2, K+, Na+, Li+, OH, F, CI, H2O, CO2 and H3O+ on silicate polymers. Geochim. Cosmochim. Acta, 44, 1627–1642.

    CAS  Google Scholar 

  • DeJong, B.H.W.S., Keefer, K.D., Brown, G.E., and Taylor, C.M. (1981) Polymerization of silicate and aluminate tetrahedra in glasses, melts and aqueous solutions—III. Local silicon environments and internal nucleation in silicate glasses. Geochim. Cosmochim. Acta, 45, 1291–1308.

    CAS  Google Scholar 

  • Dell, W.J., Bray, P.J., and Xiao, S.Z. (1983) 11B NMR studies and structural modeling of Na2O-B2O5-SiO2 glasses of high soda content. J. Noncrystall. Solids, 58, 1–16.

    CAS  Google Scholar 

  • Dickenson, M.P., and Hess, P.C. (1981) Redox equilibria and the structural role of iron in aluminosilicate melts. Contrib. Mineral. Petrol., 78, 352–357.

    CAS  Google Scholar 

  • Dickenson, M.P., and Hess, P.C. (1986) The structural role of Fe+3, Ga+3, and Al+3 and homogeneous iron redox equilibria in K2O-Al2O3-Ga2O3-SiO2-Fe2O3-FeO melts. J. Noncrystall. Solids, 86, 303–310.

    CAS  Google Scholar 

  • Dickinson, J.E. (1984) Raman spectra of potassium titanate crystals and glass. Implications for the structural role of titanium in silicate melts. Geol Soc. Amer. Abstr., 16, 486.

    Google Scholar 

  • Dickinson, J.E., and Hess, P.C. (1981) Zircon saturation in lunar basalts and granite. Earth Planet. Sci. Lett., 57, 336–344.

    Google Scholar 

  • Dickinson, J.E., Hess, P.C., Dickenson, M.P., and Danckwerth, P.A. (1984) Aluminum distribution in alkali aluminosilicate glasses. Geol. Soc. Amer. Abstr., 16, 488.

    Google Scholar 

  • Dickinson, J.E., and Hess, P.C. (1985) Rutile solubility and Ti coordination in silicate melts. Geochim. Cosmochim. Acta, 49, 2289–2296.

    CAS  Google Scholar 

  • Douglas, R.W., Nath, P., and Paul, A. (1965) Oxygen ion activity and its influence on the redox equilibrium in glasses. Phys. Chem. Glasses, 6, 216–223.

    CAS  Google Scholar 

  • Dowty, E. (1987) Vibrational interactions of tetrahedra in silicate glasses and crystals: II Calculations on melilites, pyroxenes, silica polymorphs and feldspars. Phys. Chem. Mineral., 14, 122–138.

    CAS  Google Scholar 

  • Dumas, T., and Petiau, J. (1986) EXAFS study of titanium and zinc environments during nucleation in a cordierite glass. J. Noncrystall. Solids, 81, 201–220.

    CAS  Google Scholar 

  • Dupree, R., Holland, D., McMillan, P.W., and Pettifer, R.F. (1984) The structure of soda-silicate glasses: A MAS NMR study. J. Noncrystall. Solids, 68, 399–410.

    CAS  Google Scholar 

  • Dupree, R., Holland, D., Mortuza, M.G., Collins, J.A., and Lockyer, M.W.G. (1988) An MAS NMR study of network-cation coordination in phosphosilicate glasses. J. Noncrystall. Solids, 106, 403–407.

    CAS  Google Scholar 

  • Eggler, D.H., and Rosenhauer, M. (1978) Carbon dioxide in silicate melts: II Solubilities of CO2 and H2O in CaMgSi2O6 (diopside) liquids and vapors at pressure to 40 kb. Am. J. Sci., 278, 64-94.

    CAS  Google Scholar 

  • Ellison, A.J., and Hess, P.C. (1986) Solution behavior of +4 cations in high silica melts: Petrologic and geochemical implications. Contrib. Mineral. Petrol., 94, 343–351.

    CAS  Google Scholar 

  • Ellison, A.J., and Hess, P.C. (1987) Raman spectroscopic studies of quenched glasses of the system 10 K2O- X R2O3-50 SiO2 (R = La, Gd, Yb; X = 0.2, 5, 10). Mat. Res. Soc., p. 302.

    Google Scholar 

  • Ellison, A.J., and Hess, P.C. (1988) Peraluminous and peralkaline effects upon monazite solubility in high silica liquids. EOS, 69, 498.

    Google Scholar 

  • Ellison, A.J., and Hess, P.C. (1989b) Solution mechanisms of Period V cations in potassium silicate glasses: Inferences from Raman spectra. EOS, 70, 487.

    Google Scholar 

  • Ellison, A.J., and Hess, P.C. (1989c) Solution properties of rare earth elements in silicate melts: Inferences from immiscible liquids. Geochim. Cosmochim. Acta, 53,

    Google Scholar 

  • Ellison, A.E., and Hess, P.C. (1990) Lanthanides in silicate glasses: A vibrational spectroscopic study. J. Geophys. Res., 95, 15, 717–15, 726.

    Google Scholar 

  • Ellison, A.J., and Hess, P.C. (1991) Vibrational spectra of high-silica glasses of the system KO-SiO-LaO. J. Noncrystall. Solids, 127, 247–259.

    CAS  Google Scholar 

  • Englehardt, G., Nofz, M., Forkel, K., Wihsmann, F.G., Magi, M., Samoson, A., and Lippmaa, E. (1985) Structural studies of calcium aluminosilicate glasses by high resolution solid state 29Si and 27Al magic angle spinning nuclear magnetic resonance. Phys. Chem. Glasses, 26, 157–165.

    Google Scholar 

  • Felsche, J. (1973) The crystal chemistry of the rare earth silicates. In Structure and Bonding, Vol 13, edited by J.D. Donitz, et al., pp. 100–197, Springer-Verlag, New York.

    Google Scholar 

  • Fine, G., and Stolper, E. (1985) The speciation of carbon dioxide in sodium aluminosilicate glasses. Contrib. Minerol Petrol., 91, 105–112.

    CAS  Google Scholar 

  • Fleet, M.E., Herzberg, C.T., Henderson, G.S., Crozier, E.P., Osborne, M.D., and Scarfe, CM. (1984) Coordination of FeGa and Ge in high pressure glasses by Mössbauer, Raman and X-ray spectroscopy and geological implications. Geochim. Cosmochim. Acta, 48, 1455–1466.

    CAS  Google Scholar 

  • Fogel, R.A., and Rutherford, M.J. (1990) The solubility of carbon dioxide in rhyolitic melts: A quantitative FTIR study. Amer. Mineral., 75, 1311–1326.

    CAS  Google Scholar 

  • Fukumi, K., and Sakka, S. (1988) Coordination state of Nb+5 ions in silicate and gallate glasses as studied by Raman spectroscopy. J. Mat. Sci., 23, 2819–2823.

    CAS  Google Scholar 

  • Furukawa, T., and White, W.B. (1980) Raman spectroscopic investigation of the structure and crystallization of binary alkali germanate glasses. J. Mat. Sci., 15, 1648–1662.

    CAS  Google Scholar 

  • Furukawa, T., and White, W.B. (1979) Structure and crystallization of glasses in Li2Si2O5-TiO2 system determined by Raman spectroscopy. Phys. Chem. Glasses, 20, 69–80.

    CAS  Google Scholar 

  • Galachov, F.Ya., Aver’yanov, V.I., Vavilonova, V.T., Areshev, M.P., and Makeeva, N.M. (1983) Metastable liquid phase separation in MgO (CaO)-Ga2O3-SiO2 systems. Soviet J. Glass Phys. Chem., 8, 104–110.

    Google Scholar 

  • Galachov, F.Ya., Aver’yanov, V.I., Vavilonova, V.T., and Areshev, M.P. (1976a) The metastable liquid phase separation region in the MgO-Al2O3-SiO2 system. Soviet J. Glass Phys. Chem., 2, 405–408.

    Google Scholar 

  • Galachov, F.Ya., Aver’yanov, V.I., Vailonova, V.T., and Areshev, M.P. (1976b) The metastable two liquid region in the Ga2O3-Al2O3-SiO2 and Al2O3-SiO2 system. Soviet J. Glass Phys. Chem., 2, 127–132.

    Google Scholar 

  • Gan, H., and Hess, P.C. (1989) Phosphorus effects upon the structure of potassium aluminosilicate glass: Inference from Raman and NMR, EOS, 70, 1375

    Google Scholar 

  • Gazzoni, G. (1973) Al-Ga and Si-Ge diadochy in synthetic BaAl2Si2O8 and SrAl2Si2O8. Z. Krist., 137, 24–34.

    CAS  Google Scholar 

  • Geisinger, K.L., Gibbs, C.V., and Navrotsky, A. (1985) A molecular orbital study of bond length and angle variations in framework structures. Phys. Chem. Mineral, 11, 266–283.

    CAS  Google Scholar 

  • Geisinger, K.L., Oestrike, R., Navrotsky, A., Turner, G.L., and Kirkpatrick, R.J. (1988) Thermochemistry and structure of glasses along the join NaAlSi3O8-NaBSi3O8. Geochim. Cosmochim. Acta, 52, 2405–2414.

    CAS  Google Scholar 

  • Ghiorso, M.S., Charmichael, I.S.E., Rivers, M.L., and Sack, R.O. (1983) The Gibbs free energy of mixing of natural silicate liquids; an expanded regular solution approximation for the calculation of magmatic intensive variables. Contrib. Mineral Petrol., 84, 107–145.

    CAS  Google Scholar 

  • Gibbs, G.V. (1982) Molecules as models for bonding in silicates. Amer. Mineral., 67, 421–450.

    CAS  Google Scholar 

  • Greegor, R.B., Lytle, F.W., Sandstrom, D.R., Wong, J., and Schultz, P. (1983) Investigation of TiO2-SiO2 glasses by x-ray absorption spectroscopy. J. Nonerystall Solids, 55, 27–43.

    CAS  Google Scholar 

  • Green, T.H., and Watson, E.B. (1982) Crystallization of apatite in natural magmas under high pressure, hydrous conditions, with particular reference to “orogenic” rock series. Contrib. Mineral. Petrol., 79, 96–105.

    CAS  Google Scholar 

  • Gwinn, R. and Hess, P.C. (1989) Iron and titanium solution properties in peraluminous and peralkaline rhyolitic liquids. Contrib. Mineral. Petrol., 101, 326–338.

    CAS  Google Scholar 

  • Hallas, E., Haubenreissen, U., Haeriert, M., and Mueller, D. (1983) NMR-Untersuchungen an Na2O-Al2O3-SiO2 Glaesern mit Hilfe der Chemischen Verschiebung von 27A1-Kerner. Glastechn. Ber., 56, 63–70.

    CAS  Google Scholar 

  • Hart, S.R., and Davis, K.E. (1978) Nickel partitioning between olivine and silicate liquids. Earth Planet. Sci. Lett., 40, 203–220.

    CAS  Google Scholar 

  • Hess, P.C. (1971) Polymer model of silicate melts. Geochim. Cosmochim. Acta, 35, 289–306.

    CAS  Google Scholar 

  • Hess, P.C. (1977) Structure of silicate melts. Can. Mineral., 15, 162–178.

    Google Scholar 

  • Hess, P.C. (1980) Polymerization model for silicate melts. In: Physics of Magmatic Processes edited by R.B. Hargraves, pp. 1–48.

    Google Scholar 

  • Hess, P.C, Rutherford, M.J., Guillemette, R.N, Ryerson, F.J, and Tuchfield, H.A. (1975) Residual products of fractional crystallization of lunar magmas: an experimental study. Proc. 6th Lunar Sci. Conf., 1, 895–909.

    Google Scholar 

  • Hess, P.C, and Wood, M.I. (1982) Aluminum coordination in metaluminous and peralkaline silicate melts. Contrib. Mineral. Petrol., 81, 103–112.

    CAS  Google Scholar 

  • Honada, T. and Soga, N. (1980) Coordination of titanium in silicate glasses. J. Nonerystall. Solids, 38, 105–110.

    Google Scholar 

  • Jeffes, J.H.E. (1975) The thermodynamics of polymeric melts and slags. Silicates Ind., 40, 325–340.

    CAS  Google Scholar 

  • Johnston, W.D. (1965) Oxidation-reduction equilibria in molten Na2O-2SiO2 glass. J. Am. Ceram. Soc., 48, 184–190.

    CAS  Google Scholar 

  • Konijnendijk, W.L. (1975) The structure of borosilicate glasses. Philips. Res. Repts., Suppl. 1, Eindhoven.

    Google Scholar 

  • Krol, D.M., and Smets, B.M.J. (1984) Group III ions in sodium silicate glass. Part 2: Raman study. Phys. Chem. Glasses, 25, 119–125.

    CAS  Google Scholar 

  • Kroll, H., Phillips, M.W., and Pentinghaus, H., (1978) The structure of the ordered synthetic feldspars SrGa2Si2O8,BaGa2Si2O8 and BaGa2Ge2O8. Acta Crystall., B34, 354–365.

    Google Scholar 

  • Kushiro, I. (1975) On the nature of silicate melts and its significance in magma genesis: regularities in the shift of liquid boundaries involving olivine, pyroxene, and silica minerals. Amer. J. Sci., 275, 411–431.

    CAS  Google Scholar 

  • Lacy, E.D. (1963) Aluminum in glasses and in melts. Phys. Chem. Glasses, 4, 234–238.

    CAS  Google Scholar 

  • Lacy, E.D. (1965) A statistical model of polymerization/depolymerization relationships in silicate melts and glasses. Phys. Chem. of Glasses, 6, 171–180.

    CAS  Google Scholar 

  • Levin, E.M., Robbins, C.R., and McMurdie, H.F. (1964) Phase diagrams for ceramists. Amer. Ceram. Soc.

    Google Scholar 

  • Levin, E.M., Robbins, C.R., and McMurdie, H.F. (1969) Phase diagrams for ceramists, Amer. Ceram. Soc. (Suppl.)

    Google Scholar 

  • Liebau, F. (1985) Structural Chemistry of silicates. Springer-Verlag, New York.

    Google Scholar 

  • London, D. (1987) Internal differentiation of rare element pegmatites: Effects of boron, phosphorus and fluorine. Geochim. Cosmochim. Acta, 51, 403–420.

    CAS  Google Scholar 

  • London, D., Hervig, R.H., and Morgan, G.B. VI (1988) Melt-vapor solubilities and element partitioning in peraluminous granite-pegmatite systems: experimental results with Macusani glass at 200 MPa. Contrib. Mineral. Petrol., 99, 360–373.

    CAS  Google Scholar 

  • London, D., Morgan, G.B. VI, and Hervig, R.L. (1989) Vapor-undersaturated experiments with Macusani glass + H2O at 200 MPa and the internal differentiation of granitic pegmatites. Contrib. Mineral. Petrol., 102, 1–17.

    CAS  Google Scholar 

  • Lux, G. (1987) The behavior of noble gases in silicate liquids: Solution, diffusion, bubbles and surface effects, with applications to natural samples. Geochim. Cosmochim. Acta, 51, 1549–1560.

    CAS  Google Scholar 

  • Manning, D.A.C. (1981) The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 Kb. Contrib. Mineral Petrol., 76, 206–215.

    CAS  Google Scholar 

  • Manning, D.A.C, and Pichavant, M. (1983) The role of fluorine and boron in the generation of granitic melts. In: Migmatites, Melting and Metamorphism, edited by M.P. Atherton and CD. Gribble. Shiva Publishing, Lmt.

    Google Scholar 

  • Masson, C.R., Jamieson, W.D., and Mason, F. (1974) Ionic constitution of metallurgical slags. In: The Richardson Conference on Physical Chemistry of Process Metallurgy. IMM, London.

    Google Scholar 

  • Matson, D.W., Sharma, S.K., and Philpotts, J.A. (1983) The structure of high-silica alkali-silicate glasses—a Raman spectroscopic study. J. Nonerystall. Solids, 58, 323–352.

    CAS  Google Scholar 

  • Matson, D.W., and Sharma, S.K. (1985) Structures of the sodium alumino—and gallo-silicate glasses and their germanium analogs. Geochim. Cosmochim. Acta, 49, 1913–1924.

    CAS  Google Scholar 

  • McKay, G., and Wagstaff, J. (1985) Ilmenite partitioning revisited: Confirmation of zirconium results for high-Ti mare basalt. Lunar Planet. Sci., XVI, 542–543.

    Google Scholar 

  • McKeown, D.A, Waychunas, G.A., and Brown, G.E, Jr. (1985) EXAFS study of the coordination environment of aluminum in series of silica-rich glasses and selected minerals with the Na2O-Al2O3-SiO2 system. J. Noncrystall. Solids, 74, 349–371.

    CAS  Google Scholar 

  • McMillan, P.F. (1984) Structural studies of silicate glasses and melts—applications and limitations of Raman spectroscopy. Amer. Mineral., 69, 622–644.

    CAS  Google Scholar 

  • McMillan, P.F., and Hoffmeister, A.M. (1988) Infrared and Raman spectroscopy. In: Spectroscopic Method in Mineralogy and Geology, edited by F.C. Hawthorne Reviews in Mineral., 18, 99–160.

    Google Scholar 

  • Michel, G., and Cahay, R. (1986) Raman spectroscopic investigations on the chromium VI equilibria: Part 2—Species present, influence of ionic strength and Cr2O4 −2-Cr2O7 −2 equilibrium constant. J. Raman Spectrosc, 17, 79–82.

    CAS  Google Scholar 

  • Montel, J.-C. (1986) Experimental determination of the solubility of Ce-monazite in SiO2-Al2O3-K2O-Na2O melts at 800°C, 2 kbar, under H2O-saturated conditions. Geology, 14, 659–662.

    CAS  Google Scholar 

  • Müller, D., Berger, G., Grunze, I., Ludwig, G., Hallas, E., and Haubenreisser, U. (1983) Solid state high-resolution 27A1 nuclear magnetic resonance studies of the structure of CaO-Al2O3-P2O5 glasses. Phys. Chem. Glasses, 24, 37–42.

    Google Scholar 

  • Mysen, B.O., and Virgo, D. (1980) Trace element partitioning and melt structure: an experimental study at 1 atm pressure. Geochim. Cosmochim. Acta, 44, 1917–1930.

    CAS  Google Scholar 

  • Mysen, B.O., Ryerson, F.J., and Virgo, D. (1980) The influence of TiO2 on the structure and derivative properties of silicate melts. Amer. Mineral., 65, 1150–1165.

    CAS  Google Scholar 

  • Mysen, B.O., Ryerson, F.J., and Virgo, D. (1981) The structural role of phosphorus in silicate melts. Amer. Mineral., 66, 106–117.

    CAS  Google Scholar 

  • Mysen, B.O., Virgo, D., and Seifert, F.A. (1984) Redox equilibria of iron in alkaline earth silicate melts: Relationships between melt structure, oxygen, fugacity, temperature, and properties of iron-bearing silicalc liquids. Amer. Mineral., 69, 834–848.

    CAS  Google Scholar 

  • Mysen, B.O. (1988) Structure and Properties of Silicate Melts. Elsevier, New York.

    Google Scholar 

  • Naski, G.C., and Hess, P.C. (1985) SnO2 solubility: Experimental results in peraluminous and peralkaline high silica glasses. EOS (ABS), 66, 412.

    Google Scholar 

  • Navrotsky, A., Geisinger, K.L., McMillan, P., and Gibbs, G.V. (1985) The tetrahedral framework in glasses and melts—inferences from molecular orbital calculations and implications for structure, thermodynamics, and physical properties. Phys. Chem. Mineral., 11, 284–298.

    CAS  Google Scholar 

  • Nelson, C., Furukawa, T., and White, W.B. (1983) Transition metal ions in glasses: Network modifiers or quasi-molecular complexes. Mat. Res. Bull., 18, 959–966.

    CAS  Google Scholar 

  • Nelson, C, and Tallant, D.R. (1984) Raman studies of sodium silicate glasses with low phosphate contents. Phys. Chem. Glasses, 25, 31–38.

    CAS  Google Scholar 

  • Nelson, C, Tallant, D.R., and Schelnutt, J.A. (1984) Raman spectroscopic study of scandium in sodium silicate glasses. J. Noncrystall Solids, 68, 87–98.

    CAS  Google Scholar 

  • Ohtani, E., Taulelle, F., and Angell, C.A. (1985) Al+3 coordination changes in liquid silicates under pressure. Nature, 314, 78–81.

    CAS  Google Scholar 

  • Oldfield, E., and Kirkpatrick (1985) High-resolution nuclear magnetic resonance of inorganic solids. Science, 227, 1537–1544.

    CAS  Google Scholar 

  • Pankratz, L.B., Stuve, J.M., and Gokcen, N.A. (1984) Thermodynamic Data for Mineral Technology. Bureau of Mines, Bull. 677, U.S. Dept. of the Interior.

    Google Scholar 

  • Park, M.J., Kim, K.S., and Bray, P.J. (1979) The determination of the structures of compounds and glasses in the system MgO-B2O3 using 11B NMR. Phys. Chem. Glasses, 20, 31–34.

    CAS  Google Scholar 

  • Paul, A., and Douglas, R.W. (1965) Ferrous-ferric equilibrium in binary alkali silicate glasses. Phys. Chem. Glasses, 6, 207–211.

    CAS  Google Scholar 

  • Philpotts, A.R. (1982) Composition of immiscible liquids in volcanic rocks. Contrib. Mineral. Petrol., 80, 201–218.

    CAS  Google Scholar 

  • Pichavant, M. (1981) An experimental study of the effect of boron on water-saturated haplogranite at 1 kbar pressure. Geological Applications. Contrib. Mineral. Petrol., 76, 430–439.

    CAS  Google Scholar 

  • Pichavant, M. (1987) Effects of B and H2O on liquidus phase relations in the haplogranite system at 1 kbar. Amer. Mineral. 72, 1056–1070.

    CAS  Google Scholar 

  • Pyare, R., and Nash, P. (1982) Stannous-stannic equilibrium in molten binary alkali silicate and ternary silicate glasses. J. Amer. Ceram. Soc., 65, 549–554.

    CAS  Google Scholar 

  • Quick, J.E., James, O.B., and Albee, A.L. (1981) Petrology and petrogenesis of lunar breccia 12013. Proc. Lunar Planet. Sci., 12, 117–172.

    Google Scholar 

  • Richet, R., and Bottinga, Y. (1986) Thermochemical properties of silicate glasses and liquids: A review. Rev. Geophysics, 24, 1–25.

    CAS  Google Scholar 

  • Risbud, S.H., Kirkpatrick, R.J., Taglialavore, A.P. and Montez, B. (1987) Solid state NMR evidence for 4-, 5-, and 6-fold aluminum sites in roller-quenched SiO2-Al2O3 glasses. J. Amer. Cer. Soc., 70, C-10–C-12.

    Google Scholar 

  • Robie, R.A., Heminway, B.S. and Fisher, J.R. (1978) Thermodynamic Properties of Minerals and Related Substances at 298.15 K and 1 bar (105 Pascals) Pressure and at Higher Pressure. U.S. Geological Survey Bull. 1452.

    Google Scholar 

  • Roedder, E., and Weiblen, P.W. (1972) Petrology of melt inclusions, Apollo 11 and Apollo 12 and terrestrial equivalents. Proc. 2nd Lunar Sci. Conf. 1, 507–528.

    Google Scholar 

  • Roy, B.N., and Navrotsky, A. (1984) Thermochemistry of charge coupled substitutions in silicate glasses: The systems Mn+ 1/n A1O2-SiO2 (M = Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Pb). J. Amer. Ceram. Soc., 67, 606–610.

    CAS  Google Scholar 

  • Rutherford, M.J., Hess, P.C., and Daniel, G.H. (1974) Experimental liquid line of descent and liquid immiscibility for basalt 70017. Proc 5th Lunar Sci. Conf., 1, 569–583.

    CAS  Google Scholar 

  • Ryerson, F.J. (1985) Oxide solution mechanisms in silicate melts: Systematic variations in the activity coefficient of SiO2. Geochim. Cosmochim. Acta, 49, 637–649.

    CAS  Google Scholar 

  • Ryerson, F.J., and Hess, P.C. (1978) Implications of liquid-liquid distribution coefficients to mineral-liquid partitioning. Geochim. Cosmochim. Acta, 42, 921–932.

    CAS  Google Scholar 

  • Ryerson, F.J. and Hess, P.C. (1980) The role of P205 in silicate melts. Geochim. Cosmochim., Acta, 44, 611–624.

    CAS  Google Scholar 

  • Schneider, E., Stebbins, J.F., and Pines, A. (1987) Speciation and local structure in alkali and alkaline earth silicate glasses: constraints from 29Si NMR spectroscopy. J. Noncrystall. Solids, 89, 371–383.

    CAS  Google Scholar 

  • Schramm, CM., DeJong, B.H.W.S., and Parziale, V.E. (1984) 29Si magic angle spinning NMR study on local silicon environments in amorphous and crystalline lithium silicates. J. Amer. Chem. Soc., 106, 4396–4403.

    Google Scholar 

  • Schreiber, H.D. (1987) An electromotive series of redox couples in silicate melts: A review and application to geochemistry. J. Geophys. Res., 92, 9225–9232.

    CAS  Google Scholar 

  • Schreiber, H.D., and Balazs, G.B. (1981) Uranium redox equilibria in interactions with chromium in molten silicates. Lunar Planet. Sci. XII, 940–942.

    Google Scholar 

  • Schreiber, H.D., Merkel, R.C., Schreiber, V.L., and Balazs, G.B. (1987) Mutual interactions of redox couples via electron exchange in silicate melts: Models for geochemical melt systems. J. Geophys. Res., 92, 9233–9245.

    CAS  Google Scholar 

  • Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta. Crystall., A32, 751–767.

    CAS  Google Scholar 

  • Sharma, S.K., Matson, D.W., Philpotts, J.A. and Roush, T.L. (1984) Raman study of the structure of glasses along the join SiO2-GeO2. J. Non. Crystal. Solids., 68, 99–114.

    CAS  Google Scholar 

  • Simpson, D.R. (1977) Aluminum phosphate variants of feldspar. Amer. Mineral., 62, 351–355.

    CAS  Google Scholar 

  • Smets, B.M.J., and Krol, D.M. (1984) Group III ions in sodium silicate glass. Part 1. X-ray photoelectron spectroscopy study. Phys. Chem. Glasses, 25,113–118.

    CAS  Google Scholar 

  • Stebbins, J.F. (1988) Effects of temperature and composition on silicate glass structure and dynamics: 29Si NMR results. J. Noncrystall. Solids, 106, 359–369.

    CAS  Google Scholar 

  • Stolper, E. (1982) Water in silicate glasses: An infrared spectroscopic study. Contrib. Mineral. Petrol., 81, 1–17.

    CAS  Google Scholar 

  • Stolper, E., Fine, G., Johnson, T. and Newman, S., (1987) Solubility of carbon dioxide in albitic melt. Amer. Mineral., 72, 1071–1085.

    CAS  Google Scholar 

  • Stolper, E., and Holloway, J.R. (1988) Experimental determination of the solubility of carbon dioxide in molten basalt at low pressure. Earth Planet. Sci. Lett., 87, 397–408.

    CAS  Google Scholar 

  • Sweet, J.R., and White, W.B. (1969) Study of sodium silicate glasses and liquids infrared spectroscopy. Phys. Chem. Glasses, 10, 246–251.

    CAS  Google Scholar 

  • Tardy, Y., and Vieillard, P. (1977) Relationships among Gibbs free energies of formation of phosphates, oxides and aqueous ions. Contrib. Mineral. Petrol., 63, 75–88.

    CAS  Google Scholar 

  • Taylor, M., and Brown, G.E. Jr. (1979) Structure of mineral glasses: I-The feldspar glasses NaAlSi3O8, KAlSi3O8 and CaAl2Si2O8. Geochim. Cosmochim. Acta, 43, 61–75.

    CAS  Google Scholar 

  • Tewhey, J.D., and Hess, P.C. (1979) Silicate immiscibility and thermodynamic mixing properties of liquids in the CaO-SiO2 system. Phys. Chem. Glasses, 20, 41–53.

    CAS  Google Scholar 

  • Varshal, B.G. (1975) Liquation phenomena and the structure of glasses in three component aluminosilicate systems. Soviet J. Glass Phys. Chem., 1, 40–43.

    Google Scholar 

  • Verweij, H. (1981) Raman study of arsenic-containing potassium silicate glasses. J. Amer. Ceram. Soc., 64, 493–498.

    CAS  Google Scholar 

  • Virgo, D., Mysen, B.O., and Kushiro, I. (1979) Anionic constitution of silicate melts quenched at 1 atm from Raman spectroscopy. Science, 208, 1371–1373.

    Google Scholar 

  • Visser, W., and Koster van Groos, A.F. (1979a) Effect of pressure on liquid immiscibility in the system K2O-FeO-Al2O3-SiO2-P2O5. Amer. J. Sci., 279, 1160–1175.

    CAS  Google Scholar 

  • Visser, W., and Koster van Groos, A.F. (1979b) Effects of P2O5 and TiO2 on the liquid — liquid equilibria in the system K2O-FeO-Al2O3-SiO2. Amer. J. Sci., 279, 970–989.

    CAS  Google Scholar 

  • Watson, B.E. (1976) Two liquid partition coefficients: Experimental data and geochemical implications. Contrib. Mineral. Petrol., 56, 119–134.

    CAS  Google Scholar 

  • Watson, E.B. (1977a) Partitioning of manganese between forsterite and silicate liquid. Geochim. Cosmochim. Acta, 41, 1363–1374.

    CAS  Google Scholar 

  • Watson, E.B. (1979) Zircon saturation in felsic liquids: experimental data and applications to trace element geochemistry. Contrib. Mineral. Petrol., 70,407–419.

    CAS  Google Scholar 

  • Watson, E.B., and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects on a variety of crystal magma types. Earth. Planet. Sci. Len., 64, 295–304.

    CAS  Google Scholar 

  • Waychunas, G.A., and Brown, G.E, Jr. (1984) Application of EXAFS and XANES spectrosocpy to problems in mineralogy and geochemistry. In: EXAFS and Near Edge Structure III, edited by K.O. Hodgson, et al. Springer, Proceedings of Physics 2, Springer-Verlag, New York.

    Google Scholar 

  • Wendlandt, R.F, and Harrison, W.J. (1979) Rare earth partitioning between immiscible carbonate and silicate liquids and CO2 vapor: Results and implications for the formation of light rare-earth enriched rocks. Contrib. Mineral. Petrol., 69, 409–419.

    CAS  Google Scholar 

  • Williams, Q, and Jeanloz, R. (1988) Spectroscopic evidence for pressure induced coordination changes in silicate glasses and melts. Science, 239, 902–905.

    CAS  Google Scholar 

  • Wong, J., and Angell, C.A. (1976) Glass Structure By Spectroscopy. Marcel Dekker, Inc., 864 pp.

    Google Scholar 

  • Wood, M.I., and Hess, P.C. (1980) The structural role of A1203 and Ti02 immiscible silicate liquids in the system SiO2-MgO-CaO-FeO-TiO2-Al2O3. Contrib. Mineral. Petrol., 72, 319–328.

    CAS  Google Scholar 

  • Wyllie, P.J. (1980) The origin of kimberlite. J. Geophys. Res., 85, 6902–6910.

    CAS  Google Scholar 

  • Yarker, C.A., Johnson, P.A.V., Wright, A.C., Wong, J., Greegor, R.B., Lytle, F.W., and Sinclare, R.N. (1986) Neutron diffraction and EXAFS evidence for TiO5 units in vitreous K2O-TiO2-2SiO2. J. Noncrystall. Solids, 79, 117–136.

    CAS  Google Scholar 

  • Yin, CD., Okuno, M., Morikawa, H., and Maruma, F. (1983) Structure analysis of MgSiO3 glass. J. Noncrystall. Solids, 55, 131–141.

    CAS  Google Scholar 

  • Yoshimaru, K., Veda, Y., Morinaga, K. and Yanagase, Y. (1984) Glass forming region and Ti+4 coordination number in R2O-TiO2 (Rb,K,Na) and BaO-TiO2 binary glasses. J. Ceram. Soc. Jap., 92, 17–22.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Hess, P.C. (1991). The Role of High Field Strength Cations in Silicate Melts. In: Perchuk, L.L., Kushiro, I. (eds) Physical Chemistry of Magmas. Advances in Physical Geochemistry, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3128-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3128-8_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7806-1

  • Online ISBN: 978-1-4612-3128-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics