Skip to main content

Chemical Diffusion in Magmas: An Overview of Experimental Results and Geochemical Applications

  • Chapter
Physical Chemistry of Magmas

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 9))

Abstract

The subject of chemical diffusion in magmas has attracted the interest of penologists and geochemists seeking to place time constraints on phenomena ranging from magma mixing to crystal growth. Experiments have been devised to examine chemical diffusion effects during such processes as interdiffusion of two liquids, growth and dissolution of crystals, exchange of halogens with oxygen in the air, reduction or oxidation of dissolved iron oxide, and introduction of dissolved volatiles. A few experiments have even been done using a temperature gradient to induce thermal migration.

Many of the studies carried out to date have incorporated variations in temperature, pressure, and dissolved H2O content, so the collective results allow diffusivities in magmas to be estimated quite well for most geologically- realizable conditions. In general, the following major characteristics appear to hold:

  1. (1)

    Network-forming species, most notably SiO2, are the slowest-moving magmatic components, although network-modifiers that form stable complexes in the melt may be equally sluggish;

  2. (2)

    alkalies, divalent cations, oxygen, and fluorine are the most mobile magmatic components when their transport is not rate-limited by counterdiffusion of slower species; and

  3. (3)

    the effect of H2O content on chemical diffusion of most components (includ- ing H2O itself) is extremely large, sometimes amounting to several orders of magnitude at crustal melting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albarede, F. and Bottinga, Y. (1972) Kinetic disequilibrium in trace-element partitioning between phenocrysts and host lava. Geochim. Cosmochim. Acta 36:141–156.

    Article  CAS  Google Scholar 

  • Allègre, C.J., Provost, A. and Jaupart, C. (1981) Oscillatory zoning in plagioclase: Pathological case of crystal growth. Nature 294: 223–228.

    Article  Google Scholar 

  • Arzi, A.A. (1978) Fusion kinetics, water pressure, water diffusion and electrical conductivity, interrelated. J. Petrol. 19: 153–169.

    CAS  Google Scholar 

  • Baker, D.R., and Watson, E.B. (1988) Diffusion of major and mace elements in compositionally complex CI- and F-bearing silicate melts. J. Non-Cryst Solids 102: 62–70.

    Article  CAS  Google Scholar 

  • Baker, D.R. (1990) Chemical interdiffusion of dacite and rhyolite: Anhydrous measure ments at 1 atm and 10 kbar, application of Transition State Theory, and diffusion in zoned magma chambers. Contrib. Min. Pet. 104: 407–423.

    Article  CAS  Google Scholar 

  • Bottinga, Y., Kudo, A. and Weill, D. (1966) Some observations on oscillatory zoning and crystallization of magmatic plagioclase. Am. Mineral. 50: 792–806.

    Google Scholar 

  • Bowen, N.L. (1921) Diffusion in silicate melts. J. Geol. 29: 295–317.

    Article  CAS  Google Scholar 

  • Brearley, M. and Scarfe, C. (1984) Dissolution of upper mantle minerals in alkali basalt melt at 30 kbar: Implications for ultramafic xenolith survival. Geol. Soc. Am. Abstr. Progr. 16: 454.

    Google Scholar 

  • Chekhmir, A.S. (1984) Experimental study of diffusion processes in magmatic melts. Ph.D. thesis, Vernadskii Institute of Geochemistry and Analytical Chemistry, Moscow, USSR.

    Google Scholar 

  • Chen, C.F. and Turner, J.S. (1981) Crystallization in a double-diffusive system. J. Geophys. Res. 85: 2573–2593.

    Article  Google Scholar 

  • Compston, W. and Williams, I.S. (1982) Protolith ages from inherited zircon cores measured by high mass-resolution ion microprobe. Abstrs. Fifth Int. Conf. Geochron, Cosmochron. Isot. Geol.: 63–64.

    Google Scholar 

  • Cooper, A.R. (1965) Model for multi-component diffusion. Phys. Chem. Glasses 6:55–61.

    CAS  Google Scholar 

  • Crank, J. (1975) The Mathematics of Diffusion. Second Edition. Oxford University Press, 414 pp.

    Google Scholar 

  • Delaney, J.R. and Karsten, J.L. (1981) Ion microprobe studies of water in silicate melts: Concentration-dependent diffusion in obsidian. Earth Planet. Sci. Lett. 52: 191–202.

    Article  CAS  Google Scholar 

  • Dingwell, D.B. and Scarfe, CM. (1984) Chemical diffusion of fluorine in jadeite melt at high pressure. Geochim. Cosmochim. Acta 48: 2517–2525.

    Article  CAS  Google Scholar 

  • Dingwell, D.B. and Scarfe, CM. (1985) Chemical diffusion of fluorine in melts in the system Na2O-Al2O3-SiO2. Earth Planet. Sci. Lett. 73: 377–384.

    Article  CAS  Google Scholar 

  • Dowty, E. and Berkebile C.A. (1982) Differentiation and diffusion in laboratory charges of basaltic composition during melting experiments. Am. Mineral. 67: 900–906.

    CAS  Google Scholar 

  • Dungan, M.A. and Rhodes, J.M. (1978) Residual glasses and melt inclusions in basalts from DSDP legs 45 and 46: Evidence for magma mixing. Contrib. Mineral. Petrol. 67: 417–431.

    Article  CAS  Google Scholar 

  • Dunn, T. (1982) Oxygen diffusion in three silicate melts along the join diopside-anorthite. Geochim. Cosmochim. Acta 46: 2293–2299.

    Article  CAS  Google Scholar 

  • Dunn, T. (1983) Oxygen chemical diffusion in three basaltic liquids at elevated tempera- tures and pressures. Geochim. Cosmochim. Acta 47: 1923–1930.

    Article  CAS  Google Scholar 

  • Freer, R. (1981) Diffusion in silicate minerals and glasses: A data digest and guide to the literature. Contrib. Mineral. Petrol. 76: 440–454.

    Article  CAS  Google Scholar 

  • Fujii, T. (1981) Ca-Sr chemical diffusion in melt of albite at high temperature and pressure. EOS Trans. Am. Geophys. Union 62: 428.

    Google Scholar 

  • Gerlach, D.C. and Grove T.L. (198Z) Petrology of Medicine Lake highland volcanics: Characterization of endmembers of magma mixing. Contrib. Mineral. Petrol. 80:147–159.

    Google Scholar 

  • Green, T.H. and Watson, E.B. (1982) Crystallization of apatite in natural magmas under high-pressure, hydrous conditions, with particular reference to ‘orogenic’ rock series. Contrib. Mineral. Petrol. 79: 96–105.

    Article  CAS  Google Scholar 

  • Grove, T.L. and Raudsepp, M. (1978) Effects of kinetics on the crystallization of quartz normative basalt 15597: an experimental study. Proc. Ninth Lunar Planet. Sci. Conf.: 585–599.

    Google Scholar 

  • Harrison, T.M. and Watson, E.B. (1983) Kinetics of zircon dissolution and zirconium diffusion in granitic melts of variable water content. Contrib. Mineral. Petrol. 84:66–72.

    Article  CAS  Google Scholar 

  • Harrison, T.M. and Watson, E.B. (1984) The behavior of apatite during crustal anatexis: Equilibrium and kinetic considerations. Geochim. Cosmochim. Acta 48: 1467–1477.

    Article  CAS  Google Scholar 

  • Hildreth, W. (1979) The Bishop tuff: Evidence for the origin of compositional zonation in silicic magma chambers. Geol. Soc. Am. Spec. Paper 180: 43–75.

    CAS  Google Scholar 

  • Hofmann, A.W. (1980) Diffusion in natural silicate melts: A critical review. In: Hargraves, R.B. (ed) Physics of Magmatic Processes. Princeton Univ. Press, Princeton, New Jersey, pp 385–417.

    Google Scholar 

  • Holmes, A. (1936) Transfusion of quartz xenoliths in alkali basic and ultra basic lavas, south-west Uganda. Mineral. Mag. 24: 408–421.

    Article  CAS  Google Scholar 

  • Jambon, A. (1979) Diffusion of water in granitic melt. Carnegie Inst. Wash. Yearbook 78: 352–355.

    Google Scholar 

  • Karsten, J.L., Holloway, J.R. and Delaney, J.R. (1982) Ion microprobe studies of water in silicate melts: Temperature-dependent water diffusion in obsidian. Earth Planet. Sci. Lett. 59: 420–428.

    Article  CAS  Google Scholar 

  • Kuo, L-C and Kirkpatrick, R.J. (1985) Kinetics of crystal dissolution in the system diopside-forsterite-silica. Am. J. Sci. 285: 51–90.

    Article  CAS  Google Scholar 

  • Kushiro, I. (1983) Effect of pressure on the diffusivity of network-forming cations in melts of jadeitic compositions. Geochim. Cosmochim. Acta 47: 1415–1422.

    Article  CAS  Google Scholar 

  • Lesher, C.E. and Walker, D. (1985) Solution properties of silicate liquids from thermal diffusion experiments. Geochim. Cosmochim. Acta 50: 1397–1411.

    Article  Google Scholar 

  • Lindstrom, D.J., Lofgren, G.E. and Haskin, L.A. (1979) Experimental studies of kinetic effects on trace element partitioning. EOS Trans. Am. Geophys. Union 60: 402.

    Google Scholar 

  • Loomis, T.P. (1982) Numerical simulations of crystallization processes of plagioclase in complex melts: The origin of major and oscillatory zoning in plagioclase. Contrib. Mineral. Petrol. 81: 219–229.

    Article  CAS  Google Scholar 

  • McBirney, A.R. and Noyes, R.M. (1979) Crystallization and layering of the Skaergaard intrusion. J. Petrol. 20: 487–454.

    Google Scholar 

  • McBirney, A.R. (1980) Mixing and unmixing of magmas. J. Volcanol. Geotherm. Res. 7: 357–371.

    Article  CAS  Google Scholar 

  • Medford, G.A. (1973) Calcium diffusion in a mugearite melt. Can. J. Earth Sci. 10: 394–402.

    Article  CAS  Google Scholar 

  • Muncill, G.E. and Lasagna, A.C. (1984) Chemical diffusion in plagioclase melts and petrologic implications. Geol. Soc. Am. Abstr. Progr. 16: 603.

    Google Scholar 

  • Oishi, Y., Nanba, M. and Pask, J. (1982) Analysis of liquid-state interdiffusion in the system CaO-Al2O3-SiO2 using multiatomic ion models. J. Am. Ceram. Soc. 65: 247–253.

    Article  CAS  Google Scholar 

  • Powell, M.A., Walker, D. and Hays J.F. (1980) Controlled cooling and crystallization of a eucrite: Microprobe studies. Proc. 11th Lunar Planet. Sci. Conf.: 1153–1168.

    Google Scholar 

  • Rapp, R.P. and Watson, E.B. (1985) Kinetics of monazite dissolution and diffusion of rare earth elements in granitic melts of variable water content. Contrib. Mineral. Petrol. 94: 304–316.

    Article  Google Scholar 

  • Reid, J.B., Evans, O.C. and Fates, D.G. (1983) Magma mixing in granitic rocks of the central Sierra Nevada, California. Earth Planet. Sci. Lett. 66: 243–261.

    Article  CAS  Google Scholar 

  • Riebling, E.F. (1966) Structure of sodium alumino-silicate melts containing at least 50 mole % SiO2 at 1500°C. J. Chem. Phys. 44: 2857–2865.

    Article  CAS  Google Scholar 

  • Ross, A. (1982) The temperature and pressure dependence of silicon diffusion in a sodium alumino-silicate melt. Lunar and Planetary Science XIII: 659–660.

    Google Scholar 

  • Ryerson, F.J. and Hess, P.C. (1978) Implications of liquid-liquid distribution coefficients to mineral-liquid partitioning. Geochim. Cosmochim. Acta 42: 921–932.

    Article  CAS  Google Scholar 

  • Sato, H. (1975) Diffusion coronas around quartz xenocrysts in andesite and basalt from Tertiary volcanic region in northeastern Shikoku, Japan. Contrib. Mineral. Petrol. 50: 49–64.

    Article  CAS  Google Scholar 

  • Scarfe, CM., Mysen, B.O. and Virgo, D. (1987) Pressure dependence of viscosity of silicate melts. In B.O. Mysen (ed) Magmatic processes: Physicochemical principles, Geochemical Society Special Publication No. 1 University Park, Pennsylvania, pp 59–68.

    Google Scholar 

  • Shaw, H.R. (1963) Obsidian-H2O viscosities at 1000 and 2000 bars in the temperature range 700° to 900°C. J. Geophys. Res. 68: 6337–6343.

    CAS  Google Scholar 

  • Shaw, H.R. (1972) Viscosities of magmatic silicate liquids: An empirical method of prediction. Am. J. Sci. 272: 870–893.

    Article  CAS  Google Scholar 

  • Shaw, H.R. (1974a) Diffusion of H20 in granitic liquids. Part I. Experimental data. In: Hofmann, A.W., Giletti, B.J., Yoder, H.S. and Yund, R.A. (eds) Geochemical Transport and Kinetics. Carnegie Inst. Wash. Publ. 634: 139–154.

    Google Scholar 

  • Shaw, H.R. (1974b) Diffusion of H20 in granitic liquids. Part II. Mass transfer in magma chambers. In: Hofmann, A.W., Giletti, B.J., Yoder, H.S. and Yund R.A. (eds) Geochemical Transport and Kinetics. Carnegie Inst. Wash. Publ. 634: 155–170.

    Google Scholar 

  • Shimizu, N. and Kushiro, I. (1984) Diffusivity of oxygen in jadeite and diopside melt at high pressures. Geochim Cosmochim. Acta 48: 1295–1303.

    Article  CAS  Google Scholar 

  • Sibley, D.F., Vogel, T.A., Walker, B.M. and Byerly, G. (1976) The origin of oscillatory zoning in plagioclase: A diffusion and growth-controlled model. Am. J. Sci. 376: 275–284.

    Article  Google Scholar 

  • Smith, H.D. (1974) An experimental study of the diffusion of Na, K, and Rb in magmatic silicate liquids. Ph.D. dissertation, Univ. Oregon.

    Google Scholar 

  • Smith, V.G., Tiller, W.A. and Rutter, J.W. (1955) A mathematical analysis of solute redistribution during solidification. Can. J. Phys. 33: 723–744.

    Article  CAS  Google Scholar 

  • Sparks, R.S.J. (1978) The dynamics of bubble formation and growth in magmas: A review and analysis. J. Volcanol. Geo therm. Res. 3: 1–37.

    Article  CAS  Google Scholar 

  • Spera, F.J., Yuen, D.A. and Kemp, D.V. (1984) Mass transfer along vertical walls in magma chambers and marginal upwelling. Nature 310: 764–767.

    Article  Google Scholar 

  • Stolper, E. (1982) Water in silicate glasses: An infrared spectroscopic study. Contrib. Mineral Petrol. 81: 1–17.

    Article  CAS  Google Scholar 

  • Turner, J.S. (1973) Buoyancy Effects in Fluids. Cambridge University Press.

    Google Scholar 

  • Turner, J.S. and Gustafson, L.B. (1981) Fluid motions and composition gradients produced by crystallization or melting at vertical boundaries. J. Volcanol. Geotherm. Res. 11: 93–125.

    Article  CAS  Google Scholar 

  • Walker, D., Lesher, C.E. and Hays, J.F. (1981) Soret separation of lunar liquid. Proc. Lunar Planet. Sci. 12B: 991–999.

    Google Scholar 

  • Walker, D. and DeLong S.E. (1982) Soret separation of mid-ocean ridge basalt magma. Contrib. Mineral. Petrol. 79: 231–240.

    Article  CAS  Google Scholar 

  • Watson, E.B. (1976) Two-liquid partition coefficients: Experimental data and geochemical implications. Contrib. Mineral. Petrol. 56: 119–134.

    Article  CAS  Google Scholar 

  • Watson, E.B. (1979) Calcium diffusion in a simple silicate melt to 30 kbar. Geochim. Cosmochim. Acta 43: 313–322.

    Article  CAS  Google Scholar 

  • Watson, E.B. (1981) Diffusion in magmas at depth in the earth: The effects of pressure and dissolved H2O. Earth Planet. Sci. Lett. 52: 291–301.

    Article  CAS  Google Scholar 

  • Watson, E.B. (1982) Basalt contamination by continental crust: Some experiments and models. Contrib. Mineral. Petrol. 80: 73–87.

    Article  CAS  Google Scholar 

  • Watson, E.B. and Bender J.F. (1980) Diffusion of cesium, samarium, strontium, and chlorine in molten silicate at high temperatures and pressures. Geol. Soc. Am. Abstr. Progr. 12: 545.

    Google Scholar 

  • Watson, E.B. and Jurewicz, S.R. (1984) Behavior of alkalies during diffusive interaction of granitic xenoliths with basaltic magma. J. Geol. 92: 121–131.

    Article  CAS  Google Scholar 

  • Watson, E.B., Sneeringer, M.A. and Ross, A. (1982) Diffusion of dissolved carbonate in magmas: Experimental results and applications. Earth Planet. Sci. Lett. 61: 346–358.

    Article  CAS  Google Scholar 

  • Wendlandt, R.F. (1980) Oxygen diffusion in basalt and andesite melts. EOS Trans. Am. Geophys. Union 61: 1142.

    Google Scholar 

  • Williams, I.S. (1978) U-Pb evidence for the pre-emplacement history of granitic magmas, Berridale batholith, southeastern Australia. U.S. Geol. Surv. Open-file Rep. 78–701: 455–457.

    Google Scholar 

  • Yoder, H.S. (1973) Contemporaneous basaltic and rhyolitic magmas. Am. Mineral. 58: 153–171.

    CAS  Google Scholar 

  • Zhang, Y., Stolper, E.M. and Wasserburg, G.J. (1989) The mechanism of water diffusion in silicate melts. EOS, Trans. Am. Geophys. Union 70: 501.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Watson, E.B., Baker, D.R. (1991). Chemical Diffusion in Magmas: An Overview of Experimental Results and Geochemical Applications. In: Perchuk, L.L., Kushiro, I. (eds) Physical Chemistry of Magmas. Advances in Physical Geochemistry, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3128-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3128-8_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7806-1

  • Online ISBN: 978-1-4612-3128-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics