Skip to main content

Effects of Fluid Composition on Melting Phase Relationships: The Application of Korzhinskii’s Open Systems

  • Chapter
Physical Chemistry of Magmas

Part of the book series: Advances in Physical Geochemistry ((PHYSICAL GEOCHE,volume 9))

  • 311 Accesses

Abstract

Melting phase relationships in the alumino-silicate systems are important in explaining the diversity and the regularity governing the formation of magmatic rocks. An important thing about these natural processes is that they take place against the background of the ever-changing external conditions. Therefore, to build a quantitative theory of these processes, it is imperative to know how the various factors (parameters) of the environment influence the crystal-liquid equilibria in the magmatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anfilogov, V.N., Glyuk, D.S., and Trufanova, L.G. (1973) Phase relations in interaction between granite and sodium fluoride at a water vapor pressure of 1000 kg/cm2. Geo- chem. Int., 10, 30–33.

    Google Scholar 

  • Boettcher, A.N., Burnham, C.W., Windom, K.E., and Bohlen, S.R. (1982) Liquids, glasses, and the melting of silicates at high pressures, J. Geol, 90,127–138.

    Article  CAS  Google Scholar 

  • Bottinga, Y., Weill, D.F., and Richet, P. (1981) Thermodynamic modelling of silicate melts. In: Thermodynamics of Minerals and Melts, Advances in Physical Geochemistry, Vol. 1, edited by S.K. Saxena, pp. 207–245, Springer-Verlag, New York.

    Google Scholar 

  • Burnham, C.W. (1975) Water and magmas: a mixing model. Geochim. Cosmochim. Acta, 39, 1077–1084.

    Article  CAS  Google Scholar 

  • Burnham, C.W. (1979) The importance of volatile constituents. In: The Evolution of the Igneous Rocks, Fiftieth Anniversary Perspectives, edited by H.S. Yoder, Jr., pp. 439–478. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Burnham, C.W., and Davis, N.F. (1974) The role of H2O in silicate melts: II. Thermodynamic and phase relations in the system NaAlSi3O8–H2O to 10 kilobars, 700° to 1100°C, Amer. J. Sci., 274, 902–940.

    Article  CAS  Google Scholar 

  • Burnham, C.W., Holloway, J.R., and Davis, N.F. (1969) Thermodynamic properties of water to 1000°C and 10,000 bars, Geol. Soc. Amer. Spec. Paper 132, 96 p.

    Google Scholar 

  • Carmichael, I.S.E., and MacKenzie, W.S. (1963) Feldspar-liquid equilibria in pantellerites: an experimental study, Amer. J. Sci, 261, 382–396.

    Article  CAS  Google Scholar 

  • Chelischev, N.F. (1967) An experimental study of the crystallization sequence of feldspars under the conditions of varying alkalinity of granitic melts. In: Experimental Investigations in Mineralogy and Geochemistry of Rare Elements, pp. 47–52. Nauka, Moscow (in Russian).

    Google Scholar 

  • Dubrovskii, M.I. (1971) Graniticeutectics, minima and magmas. In: Problems in Petrology and Geochemistry of Granitoids, edited by D.S. Shteinberg and G.B. Fershtater, pp. 54–68. Sverdlovsk (in Russian).

    Google Scholar 

  • Epel’baum, M.B. (1980) Silicate Melts with Volatile Components, p. 255, Nauka, Moscow (in Russian).

    Google Scholar 

  • EpeFbaum, M.B., and Kuznetsov, A.D. (1980a) On cotectic relations in closed threecomponent system and the effect of acid-base interaction of components in melts. Geochimia, 513–520 (in Russian).

    Google Scholar 

  • Epel’baum, M.B., and Kuznetsov, A.D. (1980b) Eutectic related to chemical potential of a perfectly mobile component. Dokl. USSR AS 254, 200–204 (in Russian).

    Google Scholar 

  • Epel’baum, M.B., Persikov, E.S., and Zhigun, I.G. (1984) On the ratios of various water species in water albite glass. In: Contrib. Physico-Chemical Petrology, Vol 12, edited by V.A. Zharikov and V.V. Fedkin, pp. 72–78, Nauka, Moscow (in Russian).

    Google Scholar 

  • Flood, H., and Förland, T. (1947) The acidic and basic properties of oxides. Acta Chem. Scand. 1, 592–604.

    Article  CAS  Google Scholar 

  • Fraser, D.G. (1977) Thermodynamic properties of silicate melts. In: Thermodynamics in Geology, edited by D.G. Fraser, pp. 301–325. Dordrecht-Holland.

    Google Scholar 

  • Ghiorso, H.S., Carmichael, I.S.E, Rivers, M.L, and Sack, R.O. (1983) The Gibbs free energy of mixing of natural silicate liquids; an expanded regular solution approximation for the calculation of magmatic intensive variables. Contrib. Mineral. Petrol, 84, 107–145.

    Article  CAS  Google Scholar 

  • Glyuk, D.S., and Anfilogov, V.N. (1973a) Phase equilibria in the system granite–H2O–HF at a pressure of 1000 kg/cm2, Geochem. Int., 10, 321–325.

    Google Scholar 

  • Hervig, R.L., and Navrotsky, A. (1984) Thermochemical study of glasses in the system NaAlSi3O8-KAlSi3O8-Si4O8 and the join Na1AL1.6Si2.4O8-K1.6Al1.6 Si2.4.O8. Cosmochim. Acta, 48, 513–522.

    Article  CAS  Google Scholar 

  • James, R.S., and Hamilton, D.L. (1969) Phase relations in the system NaAlSi3O8– KAlSi3O8–CaAl2Si2O8-SiO2 at 1 kilobar water vapor pressure. Contrib. Mineral. Petrol, 21, 111–141.

    Article  CAS  Google Scholar 

  • Johannes, W. (1984) Beginning of melting in the granitic system Qz-Or-Ab-An-H2O. Contrib. Mineral. Petrol, 86, 264–273.

    Article  CAS  Google Scholar 

  • Karpov, I.K., and Kiselev, A.L (1979) Some general questions of theory of open systems with perfectly mobile components. In: Physical-Chemistry of Endogenic Processes, edited by F.A. Letnikov and Yu.V. Komarov, pp. 24–44. Nauka, Novosibirsk (in Russian).

    Google Scholar 

  • Kogarko, L.N., and Krigman, L.D. (1981) Fluorine in Silicate Melts and Magmas, p. 126. Nauka, Moscow (in Russian).

    Google Scholar 

  • Kogarko, L.N., and Ryabchikov, I.D. (1980) Polarity of magmatic equilibria. Zapiski Vses. Mineral. Obsch., 109, 505–516 (in Russian).

    CAS  Google Scholar 

  • Korzhinskii, D.S. (1959) Acid–base interaction of components in silicate melts and directions of cotectic lines. Dokl. USSR AS, 228, 383–386 (in Russian).

    Google Scholar 

  • Korzhinskii, D.S. (1972) Flows of transmagmatic fluids and processes of granitization. In: Magmatism, Formation of Crystalline Rocks and Depths of the Earth, edited by A.K. Symon, pp. 144-153. Nauka, Moscow (in Russian).

    Google Scholar 

  • Korzhinskii, D.S. (1973) The Theoretical Foundations of Paragenetic Analysis of Minerals, p. 288, Nauka, Moscow (in Russian).

    Google Scholar 

  • Kovalenko, V.I., and Kovalenko, N.I. (1976) Ongonites (topaz-bearing quartz keratophyre)-subvolcanic analogues of rare-metal Li-F granites. Trans. Joint Soviet- Mongolian Sci. Rea. Geol. Exped., Vol. 15, p. 128. Nauka, Moscow (in Russian).

    Google Scholar 

  • Kovalenko, N.I. (1979) Experimental Investigation of Formation of Rare-Metal Li-F Granites, p. 152. Nauka, Moscow (in Russian).

    Google Scholar 

  • Kushiro, I. (1975) On the nature of silicate melt and its significance in magma genesis: regularities in the shift of the liquidus boundaries involving olivine, pyroxene, and silica minerals. Amer. J. Sci. 275,411–431.

    Article  CAS  Google Scholar 

  • Kuznetsov, A.D. (1982) The effect of fluid composition on eutectic relations in granitic systems. Unpublished Ph. D. Diss., Inst. Exper. Miner., Chernogolovka, p. 240 (in Russian).

    Google Scholar 

  • Kuznetsov, A.D., and Epel’baum, M.B. (1978) An experimental study of the effect of acid-base interaction in acid melts. II. The influence of acidity of the equilibrium fluid on the shift of eutectics quartz + orthoclase and quartz + orthoclase + biotite. In: Contrib. Physico-Chemical Petrology, Vol 8, edited by V.A. Zharikov, pp. 62–75, Nauka, Moscow (in Russian).

    Google Scholar 

  • Kuznetsov, A.D., and Epel’baum, M.B. (1979) On the quantitative estimation of the effect of acid–base interaction in melts, In: Problems of Physico-Chemical Petrology. Metamorphism, Magmatism, Vol. 1, edited by V.A. Zharikov, pp. 242–255. Nauka, Moscow (in Russian).

    Google Scholar 

  • Kuznetsov, A.D., and Epel’baum, M.B. (1981) Some peculiarities of thermodynamic descriptions of systems with perfectly mobile components. Geochimia, 820–835 (in Russian).

    Google Scholar 

  • Kuznetsov, Yu.A., and Izoh, E.P. (1969) Geological evidences of intratelluric heat- and mass-flows as agents of metamorphism and magma genesis. In: Problems of Petrology and Genetical Mineralogy, Vol 1, edited by Yu. A. Kuznetsov, pp. 7–20. Nauka, Moscow (in Russian).

    Google Scholar 

  • Letnikov, F.A., Karpov, I.K., Kiselev, A.L, and Shkandrii, B.O. (1977) Fluid Regime of the Earth’s Crust and Upper Mantle, p. 216. Nauka, Moscow (in Russian).

    Google Scholar 

  • Luth, W.C. (1969) The systems NaAlSi3O8-SiO2 and KAlSi3O8-SiO2 to 20 kb and the relationship between H2O content, P H2O, and P totai m granitic magmas. Amer. J. Sci., 267-A, 325–341.

    CAS  Google Scholar 

  • Luth, W.C, Jahns, R.H., and Tuttle, O.F. (1964) The granite system at pressures of 4 to 10 kilobars, J. Geophys. Res., 69, 759–773.

    Article  CAS  Google Scholar 

  • Lux, H. (1939) “Sauren” und “Basen” im Schmelzfluss: die Bestimmung der Sauer stoffionenkonzentration. Z. Electrochem., 45, 303–309.

    CAS  Google Scholar 

  • Manning, D.A.C. (1981) The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb. Contrib. Mineral. Petrol, 76, 206–215.

    Article  CAS  Google Scholar 

  • Manning, D.A.C, and Pichavant, M. (1984) Experimental studies of the role of fluorine and boron in the formation of late-stage granitic rocks and associated mineralization, in 27th Inter. Geol. Congr.,Moscow, 4–14 Aug., 1984. Dokl. Vol. 9. Section C.09.Petrology, pp. 166–174, Moscow (in Russian).

    Google Scholar 

  • Manning, D.A.C, Martin, J.S., Pichavant, M., and Henderson, C.M.B. (1984) The effect of F, B and Li on melt structure in the granitic system: different mechanisms? In: Progress in Experimental Petrology, N.E.R.C, Publ. Ser. D No. 25, 36–41.

    Google Scholar 

  • Manning, D.A.C, Hamilton, D.L., Henderson, C.M.B., and Dempsey, M.J. (1980) The probable occurence of interstitial Al in hydrous, F-bearing and F-free aluminosilicatemelts. Contrib. Mineral. Petrol, 75, 257-262.

    Article  Google Scholar 

  • Marakushev, A.A., and Tararin, LA. (1965) On mineralogical criteria of alkalinity of granitoids. Izvestia USSR AS, Ser. Geol, 20–37 (in Russian).

    Google Scholar 

  • Marin, Yu.B. (1976) Granitoidic Formations of Shallow and Moderate Depths, p. 144, Leningrad State University, Leningrad (in Russian).

    Google Scholar 

  • Marin, Yu.B., Skublov, G.T., and Vanshtein, B.G. (1983) The Petrochemical Evolution of Phanerozoic Granitoidic Formations, p. 152, Nedra, Leningrad (in Russian).

    Google Scholar 

  • Martin, J.S., and Henderson, C.M.B. (1984) An experimental study of the effects of small amounts of lithium on the granitic system. In: Progress in Experimental Petrology, N.E.R.C., Publ. Ser. D No. 25, 30-35.

    Google Scholar 

  • Münster, A. (1971) Chemical Thermodynamics, p. 296, Mir, Moscow (in Russian).

    Google Scholar 

  • Mysen, B.O. (1976) The role of volatilies in silicate melts: solubility of carbon dioxide and water in feldspar, pyroxene, and feldapathoid melts to 30 kb and 1625°C Amer. J. Sci.,276, 969-996.

    Article  CAS  Google Scholar 

  • Mysen, B.O., Ryerson, F.J, and Virgo, D. (1980a) The influence of TiO2 on the structure and derivative properties of silicate melts. Amer. Mineral. 65,1150–1165.

    CAS  Google Scholar 

  • Mysen, B.O., Virgo, D., Harrison, W.J., and Scarfe, CM. (1980b) Solubility mechanisms of H2O in silicate melts at high pressures and temperatures: a Raman spectroscopic study, Amer.Mineral 65, 900–914

    CAS  Google Scholar 

  • Naney, M.T., and S.E. Swanson (1980) The effect of Fe and Mg on crystallization in granitic systems, Amer. Mineral. 65, 639–653.

    CAS  Google Scholar 

  • Negrey, E.V. (1983) Petrology of the Late-Paleozoic Granitoids of the Central Kazakhstan, p. 168, Nauka, Moscow (in Russian)

    Google Scholar 

  • Pichavant, M. (1981) An experimental study of the effect of boron on a water saturated haplogranite at 1 kbar vapour pressure. Geological applications. Contrib. Mineral. Petrol, 76, 430–439.

    Article  CAS  Google Scholar 

  • Pichavant, M. (1983) Melt-fluid interaction deduced from studies of silicate-B2O3–H2Osystems at 1 kbar. Bull. Mineral, 106, 201–211.

    CAS  Google Scholar 

  • Pichavant, M., and Manning, D.A.C. (1984) Petrogenesis of tourmaline granites and topaz granites; the contribution of experimental data. Phys. Earth Planet. Inter. 35, 31–50.

    Article  CAS  Google Scholar 

  • Piwinskii, A. J., and Wyllie, P. J. (1968) Experimental studies of igneous rock series: a zoned pluton in the Wallowa batholith, Oregon. J. Geol. 76, 205–234.

    Article  CAS  Google Scholar 

  • Platen, H. von (1965) Kristallisation granitischer Schmelzen. Beitr. Mineral Petrogr., 11, 334–381.

    Article  Google Scholar 

  • Popov, V.S. (1981) The crystallization sequence of calc-alkali magmas and their petrological significance. Geochimia, 1665–1676 (in Russian).

    Google Scholar 

  • Ramberg, H.S. (1952) Chemical bonds and distribution of cations in silicates. J. Geol, 60, 331–355.

    Article  CAS  Google Scholar 

  • Robinson, R., and Stokes, R. (1963) Electrolyte Solutions, p. 646. IL, Moscow (in Russian).

    Google Scholar 

  • Ryabchikov, I.D. (1965) On the methods of thermodynamic analysis of equilibria in open systems. Izvestia USSR AS Ser. Geol, 144–149 (in Russian).

    Google Scholar 

  • Ryabchikov, I.D. (1975) Thermodynamics of Fluid Phase of Granitoidic Magmas, p. 232. Nauka, Moscow (in Russian).

    Google Scholar 

  • Serykh, V.I., Gabov, Yu. A., Novichkova, A.P., Samoilova, V.A., and Nazarova, K.M. (1976) The Mineral and Chemical Composition of Ultraacid Granitoids of the Central Kazakhstan, p. 194, Nauka, Alma-Ata (in Russian).

    Google Scholar 

  • Shakhparonov, M.I. (1956) Introduction to the Molecular Theory of Solutions, p. 507, GITTL, Moscow (in Russian).

    Google Scholar 

  • Shaw, H.R. (1963) The four-phase curve sanidine-quartz-liquid-gas between 500 and 4,000 bars. Amer. Mineral, 48, 883–896.

    CAS  Google Scholar 

  • Steiner, J.C., Jahns, R.H., and Luth, W.C. (1975) Crystallization of alkali feldspar and quartz in the haplogranite system NaAlSi3O8-KAlSi3O8-SiO2-H2O at 4 kb. Geol Soc. Amer. Bull, 86, 83-98.

    Article  CAS  Google Scholar 

  • Stewart, D.B. (1967) Four-phase curve in the system CaAl2Si2O8-SiO2-H2O between 1 and 10 kilobars, Schweiz. mineral Petrogr. Mitt, 47, 35–59.

    CAS  Google Scholar 

  • Stolper, E. (1982) Water in silicate glasses: an infrared spectroscopic study. Contrib. Mineral Petrol, 81, 1–17.

    Article  CAS  Google Scholar 

  • Tauson, L.V. (1977) The Geochemical Types and Potential Ore-Bearing Capacity of Granitoids, p. 279, Nauka, Moscow (in Russian).

    Google Scholar 

  • Thompson, R.N., and MacKenzie, W.S. (1967) Feldspar-liquid equilibria in peralkaline acid liquids: an experimental study. Amer. J. Sci., 265, 714–734.

    Article  CAS  Google Scholar 

  • Tuttle, O.F., and Bowen, N.L. (1958) Origin of granite in the light of experimental studies in the system NaAlSi3O8-KAlSi3O8-SiO2-H2O. Geol Soc. Amer. Mem., 74, 153.

    Google Scholar 

  • Wendlandt, R.F. (1981) Influence of C02 on melting of model granulite facies assemblages: a model for the genesis of charnockites. Amer. Mineral. 66, 1164–1174.

    CAS  Google Scholar 

  • Whitney, J. A. (1975) The effect of pressure, temperature, and XH2Q on phase assemblege in four synthetic rock compositions, J. Geol., 83,1–31.

    Article  CAS  Google Scholar 

  • Winkler, H.G.F., and Lindemann, W. (1972) The system Qz-Or-An-H2O within the granitic system Qz-Or-Ab-An-H2O. Application to granitic magma formation. N. Jb. Mineral. Mh., 49–61.

    Google Scholar 

  • Wyllie, P.J. (1979) Magmas and volatile components. Amer. Mineral., 64, 469-500.

    CAS  Google Scholar 

  • Wyllie, P.J., Huang, W.L., Stern, C.R., and Maaløe, S. (1976) Granitic magmas: possible and impossible sources, water contents, and crystallization sequences. Can. J. Earth Sci., 13, 1007-1019.

    Article  CAS  Google Scholar 

  • Zharikov, V.A. (1969) Regime of components in melts and magmatic replacement. In: Problem of Petrology and Genetical Mineralogy, Vol 1, edited by Yu. A. Kuznetsov, pp. 62–79, Nauka, Moscow (in Russian).

    Google Scholar 

  • Zharikov, V.A. (1976) Foundations of Physico-Chemical Petrology, p. 420, Moscow State University, Moscow (in Russian).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Kuznetsov, A.D., Epel’baum, M.B. (1991). Effects of Fluid Composition on Melting Phase Relationships: The Application of Korzhinskii’s Open Systems. In: Perchuk, L.L., Kushiro, I. (eds) Physical Chemistry of Magmas. Advances in Physical Geochemistry, vol 9. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3128-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3128-8_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7806-1

  • Online ISBN: 978-1-4612-3128-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics