Skip to main content

Functional Consequences of Regional Heterogeneity in the Left Ventricle

  • Chapter
Theory of Heart

Part of the book series: Institute for Nonlinear Science ((INLS))

Abstract

The left ventricle is characterized by significant regional heterogeneity in structure, electrophysiology, and function. This discussion focuses on the functional consequences of regional heterogeneity. First we examine the extent of regional heterogeneity in deformations observed under physiologic conditions. The importance of considering the direction as well as the magnitude of maximal deformations will be emphasized. Second, we discuss potential mechanisms for regional heterogeneity in deformations. The potential contribution of electrophysiologic, anatomic, structural, and geometric factors will be considered. Third, we examine the functional consequences of regional heterogeneity using experimental models. Regional ischemia is used to examine the mechanical interaction between ischemic and nonischemic areas, that is, the interaction between “weak” and “strong” muscles. Regional inotropic stimulation is used to produce subtle alterations in regional heterogeneity to examine the mechanical interaction between “strong” and “stronger” muscles. Finally, we correlate some of the predictions from theoretical models of acute ischemia and chronic infarction with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.T. Angelakos. Regional distribution of catecholamines in the dog heart. Circ. Res., 16:39–44, 1965.

    Google Scholar 

  2. G. Arisi, E. Macchi, S. Baruffi, S. Spaggiari, and B. Taccardi. Potential fields on the ventricular surface of the exposed dog heart during normal excitation. Circ. Res., 52:706–715, 1983.

    Google Scholar 

  3. T. Arts, P.C. Veenstra, and R.S. Reneman. Epicardial deformation and left ventricular wall mechanics during ejection in the dog. Am. J. Physiol., 243:H379–H390, 1982.

    Google Scholar 

  4. F.R. Badke, P. Boinay, and J.W. Covell. Effects of ventricular pacing on regional left ventricular performance in the dog. Am. J. Physiol., 238:H858–H867, 1980.

    Google Scholar 

  5. A.S. Blaustein and W.H. Gaasch. Myocardial relaxation VI: Effects of ß-adrenergic tone and asynchrony on LV relaxation rate. Am. J. Physiol., 244:H417–H422, 1983.

    Google Scholar 

  6. D.K. Bogen, A. Needleman, and T.A. McMahon. An analysis of myocardial infarction: The effect of regional changes in contractility. Circ. Res., 55:805–815, 1984.

    Google Scholar 

  7. D.K. Bogen, S.A. Rabinowitz, A. Needleman, T.A. McMahon, and W.H. Abelmann. An analysis of the mechanical disadvantage of myocardial infarction in the canine left ventricle. Circ. Res., 47:728–741, 1980.

    Google Scholar 

  8. A.A. Bove, T.H. Kreulen, and J.F. Spann. Computer analysis of left ventricular dynamic geometry in man. Am. J. Cardiol., 41:1239–1248, 1978.

    Article  Google Scholar 

  9. D.L. Brutsaert. Nonuniformity: A physiologic modulator of contraction and relaxation of the normal heart. J. Am. Coll. Cardiol., 9:341–348, 1987.

    Article  Google Scholar 

  10. J.D. Carroll, O.M. Hess, H.O. Hirzel, and H.P. Krayenbuehl. Exerciseinduced ischemia: The influence of altered relaxation on early diastolic pressures. Circulation, 67:521–528, 1983.

    Article  Google Scholar 

  11. M. Courtois, S.J. Kovacs Jr., and P.A. Ludbrook. Transmural pressure-flow velocity relation: Importance of regional pressure gradients in the left ventricle during diastole. Circulation, 78:1459–1468, 1988.

    Article  Google Scholar 

  12. D.A. Cox and S.F. Vatner. Myocardial function in areas of heterogenous perfusion after coronary artery occlusion in conscious dogs. Circulation, 66:1154–1158, 1982.

    Article  Google Scholar 

  13. V.B. Elings, G.E. Jahn, and J.H.K. Vogel. A theoretical model of regionally ischemic myocardium. Circ. Res., 41:722–729, 1977.

    Google Scholar 

  14. T.R. Fenton, J.M. Cherry, and F.A. Klassen. Transmural myocardial deformation in the canine left ventricular wall. Am. J. Physiol., 235:H523–H530, 1978.

    Google Scholar 

  15. M.R. Franz, K. Bargheer, W. Rafflenbeul, A Haverich, and P.R. Lichtlen. Monophasic action potential mapping in human subjects with normal electrocardiograms: Direct evidence for the genesis of the T wave. Circulation, 75:379–386, 1987.

    Article  Google Scholar 

  16. K.P. Gallagher, R.A. Gerren, M.C. Stirling, et al. The distribution of functional impairment across the lateral border of acutely ischemic myocardium. Circ. Res., 58:570–583, 1986.

    Google Scholar 

  17. K.P. Gallagher, G. Osakada, O.M. Hess, J.A. Koziol, W.S. Kemper, and J. Ross Jr. Subepicardial segmental function during coronary stenosis and the role of myocardial fiber orientation. Circ. Res., 50:352–359, 1982.

    Google Scholar 

  18. H.J. Gelberg, B.H. Brundage, S. Glantz, and W.W. Parmley. Quantitative left ventricular wall motion analysis: A comparison of area, chord and radial methods. Circulation, 59:991–1000, 1979.

    Google Scholar 

  19. T. Gillebert and W.Y.W. Lew. Nonuniformity and volume loading independently influence isovolumic relaxation rates. Am. J. Physiol., 257:H1927–H1935, 1989.

    Google Scholar 

  20. Y. Goto, Y. Igarashi, O. Yamada, K. Hiramori, and H. Suga. Hyperkinesis without the Frank-Starling mechanism in a nonischemic region of acutely ischemic excised canine heart. Circulation, 77:468–477, 1988.

    Article  Google Scholar 

  21. Y. Goto, Y. Igarashi, Y. Yasumura, et al. Integrated regional work equals total left ventricular work in regionally ischemic canine heart. Am. J. Physiol., 254:H894–H904, 1988.

    Google Scholar 

  22. R.A. Greenbaum, S.Y. Ho, D.G. Gibson, A.E. Becker, and R.H. Anderson. Left ventricular fibre architecture in man. Br. Heart J., 45:248–263, 1981.

    Article  Google Scholar 

  23. A.F. Grimm, H.L. Lin, and B.R. Grimm. Left ventricular free wall and intraventricular pressure-sarcomere length distributions. Am. J. Physiol., 239:H101–H107, 1980.

    Google Scholar 

  24. C.L. Grines, E.J. Topol, R.M. Califf, et al. Prognostic implications and predictors of enhanced regional wall motion of the noninfarct zone after thrombolysis and angioplasty therapy of acute myocardial infarction. Circulation, 80:245–253, 1989.

    Article  Google Scholar 

  25. P.A. Gwirtz, D. Franklin, and H.J. Mass. Modulation of synchrony of left ventricular contraction by regional adrenergic stimulation in conscious dogs. Am. J. Physiol., 251:H490–H495, 1986.

    Google Scholar 

  26. R.V. Haendchen, H.L. Wyatt, G. Maurer, et al. Quantitation of regional cardiac function by two-dimensional echocardiography: I. Patterns of contraction in the normal left ventricle. Circulation, 67:1234–1244, 1983.

    Article  Google Scholar 

  27. D.E. Hansen, G.T. Daughters II, E.B. Stinson, E.L. Alderman, N.B. Ingels Jr., and D.C. Miller. Torsional deformation of the left ventricular midwall in human hearts with intramyocardial markers: Regional heterogeneity and sensitivity to the inotropic effects of abrupt rate changes. Circ. Res., 62:941–952, 1988.

    Google Scholar 

  28. F.W. Heineman and J. Grayson. Transmural distribution of intramyocardial pressure measured by micropipette technique. Am. J. Physiol., 249:H1216–H1223, 1985.

    Google Scholar 

  29. G.R. Heyndrickx, P.J. Vantrimpont, M.F. Rousseau, and H. Pouleur. Effects of asynchrony on myocardial relaxation at rest and during exercise in conscious dogs. Am. J. Physiol., 254:H817–H822, 1988.

    Google Scholar 

  30. L. Hittinger, B. Crozatier, J-P. Belot, and M. Pierrot. Regional ventricular segmental dynamics in normal conscious dogs. Am. J. Physiol., 253:H713–H719, 1987.

    Google Scholar 

  31. B.D. Hoit and W.Y.W. Lew. Functional consequences of acute anterior vs. posterior wall ischemia in canine left ventricles. Am. J. Physiol., 254:H1065–H1073, 1988.

    Google Scholar 

  32. B.D. Hoit, W.Y.W. Lew, and M.M. LeWinter. Regional variation in pericardial contact pressure in the canine ventricle. Am. J. Physiol., 255:H1370–H1377, 1988.

    Google Scholar 

  33. T. Hosino, H. Fujiwara, C. Kawai, and Y. Hamashima. Myocardial fiber diameter and regional distribution in the ventricular wall of normal adult hearts, hypertensive hearts and hearts with hypertrophic cardiomyopathy. Circulation, 67:1109–1116, 1983.

    Article  Google Scholar 

  34. R.M. Huisman, P. Sipkema, N. Westerhof, and G. Elzinga. Comparison of models used to calculate left ventricular wall force. Med. Biol. Eng. Cornp., 18:133–144, 1980.

    Article  Google Scholar 

  35. A.J. Ilebekk, J. Lekven, and F. Kiil. Left ventricular asynergy during intracoronary isoproterenol infusion in dogs. Am. J. Physiol., 239:H594–H600, 1980.

    Google Scholar 

  36. N.B. Ingels Jr., G.T. Daughters II, E.B. Stinson, and E.L. Alderman. Left ventricular midwall dynamics in the right anterior oblique projection in intact unanesthetized man. J. Biomech., 14(4):221–233, 1981.

    Article  Google Scholar 

  37. N.B. Ingels Jr., G.T. Daughters II, E.B. Stinson, and E.L. Alderman. Measurement of midwall myocardial dynamics in intact man by radiography of surgically implanted markers. Circulation, 52:859–867, 1975.

    Google Scholar 

  38. N.B. Ingels Jr., D.E. Hansen, G.T. Daughters II, E.B. Stinson, E.L. Alderman, and D.C. Miller. Relation between longitudinal, circumferential, and oblique shortening and torsional deformation in the left ventricle of the transplanted human heart. Circ. Res., 64:915–927, 1989.

    Google Scholar 

  39. W. Jaarsma, C.A. Visser, V.M.J. Eenige, et al. Prognostic implications of regional hyperkinesia and remote asynergy of noninfarcted myocardium. Am. J. Cardiol., 58:394–398, 1986.

    Article  Google Scholar 

  40. R.F. Janz and R.J. Waldron. Predicted effect of chronic apical aneurysms on the passive stiffness of the human left ventricle. Circ. Res., 42:255–263, 1978.

    Google Scholar 

  41. S. Kimura, A.L. Bassett, T. Furukawa, J. Cuevas, and R.J. Myerburg. Electrophysiological properties and responses to stimulated ischemia in cat ventricular myocytes of endocardial and epicardial origin. Circ. Res., 66:469–477, 1990.

    Google Scholar 

  42. S.C. Klausner, T.J. Blair, W.F. Bulawa, G.M. Jeppson, R.L. Jensen, and P.D. Clayton. Quantitative analysis of segmental wall motion through systole and diastole in the normal human left ventricle. Circulation, 65:580–590, 1982.

    Article  Google Scholar 

  43. Y. Kong, J. Morris Jr., and H.D. Mcintosh. Assessment of regional myocardial performance from biplane coronary cineangiograms. Am. J. Cardiol., 27:529–537, 1971.

    Article  Google Scholar 

  44. T. Kumada, J.S. Karliner, H. Pouleur, K.P. Gallagher, K. Shirato, and J. Ross Jr. Effects of coronary occlusion on early ventricular diastolic events in conscious dogs. Am. J. Physiol., 237:H542–H549, 1979.

    Google Scholar 

  45. J.D. Laird and H.P. Vellekoop. Time course of passive elasticity of myocardial tissue following experimental infarction in rabbits and its relation to mechanical dysfunction. Circ. Res., 41:715–721, 1977.

    Google Scholar 

  46. M. Laks, M.J. Nisenson, and H.J.C. Swan. Myocardial cell and sarcomere lengths in the normal dog heart. Circ. Res., 21:671–678, 1967.

    Google Scholar 

  47. W.Y.W. Lew. Influence of ischemic zone size on nonischemic area function in the canine left ventricle. Am. J. Physiol., 252:H990–H997, 1987.

    Google Scholar 

  48. W.Y.W. Lew and E. Ban-Hayashi. Mechanisms of improving regional and global ventricular function by preload alterations during acute ischemia in the canine left ventricle. Circulation, 72:1125–1134, 1985.

    Article  Google Scholar 

  49. W.Y.W. Lew, Z. Chen, B. Guth, and J.W. Covell. Mechanisms of augmented segment shortening in nonischemic areas during acute ischemia of the canine left ventricle. Circ. Res., 56:351–358, 1985.

    Google Scholar 

  50. W.Y.W. Lew and M.M. LeWinter. Regional circumferential lengthening patterns in canine left ventricle. Am. J. Physiol., 245:H741–H748, 1983.

    Google Scholar 

  51. W.Y.W. Lew and M.M. LeWinter. Regional comparison of midwall segment and area shortening in the canine left ventricle. Circ. Res., 58:678–691, 1986.

    Google Scholar 

  52. W.Y.W. Lew and C.M. Rasmussen. Influence of nonuniformity on the rate of left ventricular pressure fall in the dog. Am. J. Physiol., 256:H222–H232, 1989.

    Google Scholar 

  53. M.M. LeWinter, R.S. Kent, J.M. Kroener, T.E. Carew, and J.W. Covell. Regional differences in myocardial performance in the left ventricle of the dog. Circ. Res., 37:191–199, 1975.

    Google Scholar 

  54. D. Ling, J.S. Rankin, C.H. Edwards, RA. McHale, and R.W. Anderson. Regional diastolic mechanics of the left ventricle in the conscious dog. Am. J. Physiol., 236:H323–H330, 1979.

    Google Scholar 

  55. S.H. Litovsky and C. Antzelevitch. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ. Res., 62:116–126, 1988.

    Google Scholar 

  56. G.B.J. Mancini, S.F. DeBoe, S.B. Anselmo, M.T. LaFree, and R.A. Vogel. Quantitative regional curvature analysis: An application of shape determination for the assessment of segmental left ventricular function in man. Am. Heart J., 113:326–334, 1987.

    Article  Google Scholar 

  57. A.D. McCulloch, B.H. Smaill, and P.J. Hunter. Regional left ventricular epicardial deformation in the passive dog heart. Circ. Res., 64:721–733, 1989.

    Google Scholar 

  58. G.D. Meier, M.C. Ziskin, W.P. Santamore, and A.A. Bove. Kinematics of the beating heart. IEEE Trans. Biomed. Eng., BME-27:319–329, 1980.

    Article  Google Scholar 

  59. X-H Ning, T.N. Zweng, and K.P. Gallagher. Ejection and isovolumic contraction-phase wall thickening in nonischemic myocardium during coronary occlusion. Am. J. Physiol., 258:H490–H499, 1990.

    Google Scholar 

  60. R.C. Park, W.C. Little, and R.A. O’Rourke. Effect of alteration of left ventricular activation sequence on the left ventricular end systolic pressure-volume relation in closed-chest dogs. Circ. Res., 57:706–717, 1985.

    Google Scholar 

  61. W.W. Parmley, L. Chuck, C. Kivowitz, J.M. Matloff, and J.C. Swan. In vitro length-tension relations of human ventricular aneurysms: Relation to stiffness to mechanical disadvantage. Am. J. Cardiol., 32:889–894, 1973.

    Article  Google Scholar 

  62. G.L. Pierpont, E.G. DeMaster, and J.N. Cohn. Regional differences in adrenergic function within the left ventricle. Am. J. Physiol., 246: H824–H829, 1984.

    Google Scholar 

  63. J.S. Rankin, P.A. McHale, C.E. Arentzen, J.C. Greenfield Jr., and R.W. Anderson. The three-dimensional dynamic geometry of the left ventricle in the conscious dog. Circ. Res., 39:304–313, 1976.

    Google Scholar 

  64. L. Role, D. Bogen, T.A. McMahon, and W.H. Abelmann. Regional variations in calculated diastolic wall stress in rat left ventricle. Am. J. Physiol., 235:H247–H250, 1978.

    Google Scholar 

  65. M.A. Ross and D.D. Streeter Jr. Nonuniform subendocardial fiber orientation in the normal macaque left ventricle. Eur. J. Cardiol., 3:229–247, 1975.

    Google Scholar 

  66. A.M. Scher and M.S. Spach. Cardiac depolarization and repolarization and the electrocardiogram. In R.M. Berne, N. Sperelakis, and S.R. Geiger, editors, Handbook of Physiology, Section 2: The Cardiovascular System, pages 357–392. American Physiological Society, Bethesda, MD, 1979.

    Google Scholar 

  67. R.M. Schneider, A. Chu, M. Akaishi, W.S. Weintraub, K.G. Morris, and F.R. Cobb. Left ventricular ejection fraction after acute coronary occlusion in conscious dogs: Relation to the extent and site of myocardial infarction. Circulation, 72:632–638, 1985.

    Article  Google Scholar 

  68. R.M. Schneider, K.G. Morris, A. Chu, K.B. Roberts, R E. Coleman, and F.R. Cobb. Relation between myocardial perfusion and left ventricular function following acute coronary occlusion: Disproportionate effects of anterior vs. inferior ischemia. Circ. Res., 60:60–71, 1987.

    Google Scholar 

  69. R. Shabetai. The Pericardium. Grune & Stratton, New York, 1981.

    Google Scholar 

  70. E. Shapiro, D.L. Marier, M.G. St. John Sutton, and D.G. Gibson. Regional non-uniformity in wall dynamics in normal left ventricle. Br. Heart J., 45:264–270, 1981.

    Article  Google Scholar 

  71. F.H. Sheehan, D.K. Stewart, H.T. Dodge, S. Mitten, E.L. Bolson, and B.G. Brown. Variability in the measurement of regional left ventricular wall motion from contrast angiograms. Circulation, 68:550–559, 1983.

    Article  Google Scholar 

  72. P.D. Stein, M. Marzilli, H.N. Sabbah, and T. Lee. Systolic and diastolic pressure gradients within the left ventricular wall. Am. J. Physiol., 238:H625–H630, 1980.

    Google Scholar 

  73. D.D. Streeter. Gross morphology and fiber geometry of the heart. In R.M. Berne, editor, Handbook of Physiology, Section 2, Volume 1, pages 61–112. American Physiological Society, Bethesda, MD, 1979.

    Google Scholar 

  74. D.D. Streeter Jr. and D.L. Bassett. Engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole. Anat. Record, 155:503–511, 1966.

    Article  Google Scholar 

  75. D.D. Streeter Jr. and W.T. Hanna. Engineering mechanics for successive states in canine left ventricular myocardium: I. Cavity and wall geometry. Circ. Res., 33:639–655, 1973.

    Google Scholar 

  76. R. Tennant and C.J. Wiggers. The effect of coronary occlusion on myocardial contraction. Am. J. Physiol.,112:351–361, 1935.

    Google Scholar 

  77. P. Theroux, J. Ross Jr., D. Franklin, J.W. Covell, C.M. Bloor, and S. Sasayama. Regional myocardial function and dimensions early and late after myocardial infarction in the unanesthetized dog. Circ. Res., 40:158–165, 1977.

    Google Scholar 

  78. F.J. Villarreal and W.Y.W. Lew. Finite strains in the anterior and posterior wall of the canine left ventricle. Am. J. Physiol., 259: H1409–H1418, 1990.

    Google Scholar 

  79. F.J. Villarreal, L.K. Waldman, and W.Y.W. Lew. A technique for measuring regional two-dimensional finite strains in canine left ventricle. Circ. Res., 62:711–721, 1988.

    Google Scholar 

  80. L.K. Waldman, Y.C. Fung, and J.W. Covell. Transmural myocardial deformation in the canine left ventricle: normal in vivo threedimensional finite strains. Circ. Res., 57:152–163, 1985.

    Google Scholar 

  81. L.K. Waldman, D. Nosan, F.J. Villarreal, and J.W. Covell. Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ. Res., 63:550–562, 1985.

    Google Scholar 

  82. T. Watanabe, L.M. Delbridge, J.O. Bustamante, and T.F. McDonald. Heterogeneity of the action potential in isolated rat ventricular myocytes and tissue. Circ. Res., 52:280–290, 1983.

    Google Scholar 

  83. T. Watanabe, P.M. Rautaharju, and T.F. McDonald. Ventricular action potentials, ventricular extracellular potentials, and the ECG of guinea pig. Circ. Res., 57:362–373, 1985.

    Google Scholar 

  84. A.W. Weigner, G.J. Allen, and O.H.L. Bing. Weak and strong myocardium in series: Implications for segmental dysfunction. Am. J. Physiol., 235:H776–H783, 1978.

    Google Scholar 

  85. C.J. Wiggers. The muscular reactions of the mammalian ventricles to artificial surface stimuli. Am. J. Physiol., 73:345–378, 1925.

    Google Scholar 

  86. C. Yoran, J.W. Covell, and J. Ross Jr. Structural basis for the ascending limb of left ventricular function. Circ. Res., 32:297–303, 1973.

    Google Scholar 

  87. C. Yoran, E.H. Sonnenblick, and E.S. Kirk. Contractile reserve and left ventricular function in regional myocardial ischemia in the dog. Circulation, 66:121–128, 1982.

    Article  Google Scholar 

  88. M.R. Zile, A.S. Blaustein, G. Shimizu, and W.H. Gaasch. Right ventricular pacing reduces the rate of left ventricular relaxation and filling. J. Am. Coll. Cardiol.,10:702–709, 1987.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Lew, W.Y.W. (1991). Functional Consequences of Regional Heterogeneity in the Left Ventricle. In: Glass, L., Hunter, P., McCulloch, A. (eds) Theory of Heart. Institute for Nonlinear Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3118-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3118-9_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7803-0

  • Online ISBN: 978-1-4612-3118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics