Skip to main content

Estimating the Ventricular Fibrillation Threshold

  • Chapter
Theory of Heart

Part of the book series: Institute for Nonlinear Science ((INLS))

Abstract

Implicit in the basic principles of reasonably uniform excitable media is a vortexlike mode of self-excitation. In heart muscle this would be a rotating action potential and it has in fact been found in both two- and three-dimensional settings. It rotates in 120 msec and has a core diameter of \(\frac{2}{3}\) cm or less, conforming to rough estimates based on oversim- plified physics. Similar estimates indicate that the point-stimulus threshold should be about 4 mA/cm2, based on observed thresholds of total current and a theoretical estimate of the maximum wavefront curvature compatible with sustained propagation. The vortex diameter together with the stimulation threshold can be used to derive the electrical threshold for nucleation by a stable vortex pair: this 16 mA estimate also compares favorably with observations of the electrical threshold for instigation of fibrillation. Electrical defibrillation should require local potential gradients of about 6 V/cm or current densities near 20 mA/cm2, also roughly as observed. Quantitative derivation of these thresholds became feasible only after the pertinent electrophysiology was simplified beyond the comfort level of competent theorists, but this is sometimes how a new starting point is secured for eventual refinement to a believable theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.H. Adrian, W.K. Chandler, and A.L. Hodgkin. The kinetics of mechanical activation in frog muscle. J. Physiol., 204: 207–230, 1969.

    Google Scholar 

  2. M.A. Allessie, F.I.M. Bonke, and F.J.G. Schopman. Circus movement in rabbit atrial muscle as a mechanism of tachycardia. III. The “leading circle” concept: A new model of circus movement in cardiac tissue without the involvement of an anatomical obstacle. Circ. Res., 41: 9–18, 1977.

    Google Scholar 

  3. M.A. Allessie, M.J. Schalij, C.J. Kirchoff, L. Boersma, M. Huybers, and J. Hollen. Cell to cell signalling: From experiments to theoretical models. In A. Goldbeter, editor, The Role of Anisotropic Impulse Propagation in Ventricular Tachycardia, pages 565–575. Academic Press, New York, 1989.

    Google Scholar 

  4. M.A. Allessie, M.J. Schalij, C.J.H.J. Kirchoff, L. Boersma, M. Huyberts, and J. Hollen. Electrophysiology of spiral waves in two dimensions: The role of anisotropy. In J. Jalife, editor, Mathematical Approaches to Cardiac Arrhythmias. Ann. NY Acad. Sci., 591: 247–256 (1990).

    Google Scholar 

  5. P.J. Axelrod, R.L. Verrier, and B.L. Lown. Vulnerability to ventricular fibrillation during acute coronary arterial occlusion and release. Am. J. Cardiol., 36: 776–781, 1975.

    Google Scholar 

  6. G.W. Beeler and H. Reuter. Reconstruction of the action potential of ventricular myocardial fibers. J. Physiol., 268: 177–210, 1977.

    Google Scholar 

  7. G.B. Benedek and F.M.H. Villars. Physics with Illustrations from Biology and Medicine. Addison-Wesley, Reading, MA, 1979.

    Google Scholar 

  8. P.K. Brazhnik, V.A. Davydov, V.S. Zykov, and A.S. Mikhailov. Vortex rings in excitable media. Zhurnal. Eksper. Teoret. Fiziki, 93: 1725–1736, 1987.

    ADS  Google Scholar 

  9. C.M. Brooks, B.B. Hoffman, E.E. Suckling, and O. Orias. Excitability of the Heart. Grune & Stratton, New York, 1955.

    Google Scholar 

  10. M.J. Burgess, D. Williams, and P. Ershler. Influence of test site on ventricular fibrillation threshold. Am. Heart J., 94: 55–61, 1977.

    Google Scholar 

  11. R.G. Casten, H. Cohen, and P.A. Lagerstrom. Perturbation analysis of and approximation to the Hodgkin-Huxley theory. Q. Appl. Math., 32(4): 365–402, 1975.

    MathSciNet  MATH  Google Scholar 

  12. T.C. Chamberlin. The method of multiple working hypotheses. Science, 15: 92–97, 1890. Reprinted in Science, 148: 754–759, 1965.

    Google Scholar 

  13. R.A. Chapman and C.H. Fry. An analysis of the cable properties of frog ventricular myocardium. J. Physiol., 283: 263–282, 1978.

    Google Scholar 

  14. P-S Chen, N. Shibata, E.G. Dixon, R.O. Martin, and R.E. Ideker. Comparison of the defibrillation threshold and the upper limit of ventricular vulnerability. Circulation, 73: 1022–1028, 1986.

    Google Scholar 

  15. P-S Chen, N. Shibata, P.D. Wolf, et al. Epicardial activation during successful and unsuccessful ventricular defibrillation in open chest dogs. Cardiovasc. Rev. Rep., 7: 625–648, 1986.

    Google Scholar 

  16. P-S Chen, P.D. Wolf, F.J. Claydon, et al. The potential gradient field created by epicardial defibrillation electrodes in dogs. Circulation, 74(3): 626–636, 1986.

    Google Scholar 

  17. P-S Chen, P.D. Wolf, E.G. Dixon, et al. Mechanism of ventricular vulnerability to single premature stimuli in open chest dogs. Circ. Res., 62: 1191–1209, 1988.

    Google Scholar 

  18. M. Courtemanche, W.E. Skaggs, and A.T. Winfree. Stable three-dimensional action potential circulation in the FitzHugh-Nagumo model. Physica D., 41: 173–182, 1990.

    MathSciNet  ADS  MATH  Google Scholar 

  19. M. Courtemanche and A.T. Winfree. A two-dimensional model of electrical waves in the heart. Pixel, 1(3): 24–31, 1990.

    Google Scholar 

  20. F. Crick. Diffusion in embryogenesis. Nature, 225: 420–422, 1970.

    ADS  Google Scholar 

  21. R.J. Damiano, P.K. Smith, H. Tripp, et al. The effect of chemical ablation of the endocardium on ventricular fibrillation threshold. Circulation, 74: 645–652, 1986.

    Google Scholar 

  22. J.M. Davy, E.S. Fain, P. Dorian, and R.A. Winkle. The relationship between successful defibrillation and delivered energy in open-chest dogs: Reappraisal of the “defibrillation threshold” concept. Am. Heart J., 113: 77–84, 1987.

    Google Scholar 

  23. J.M.Y. de Bakker, M.J. Janse, F.J.L. van Capelle, and D. Durrer. Endocardial mapping by simultaneous recording of endocardial electrograms during cardiac surgery for ventricular aneurysm. J. Am. Coll. Cardiol., 2: 947–953, 1983.

    Google Scholar 

  24. S. Dillon, M.A. Allessie, P.C. Ursell, and A.L. Wit. Influence of anisotropic tissue structure on reentrant circuits in the epicardial border zone of subacute canine infarcts. Circ. Res., 63: 182–206, 1988.

    Google Scholar 

  25. D.-F. Ding. A plausible mechanism for the motion of untwisted scroll rings in excitable media. Physica D., 32: 471–487, 1988.

    MathSciNet  ADS  MATH  Google Scholar 

  26. J.D. Dockery, J.P. Keener, and J.J. Tyson. Dispersion of traveling waves in the Belousov-Zhabotinsky reaction. Physica D., 30: 177–191, 1988.

    ADS  MATH  Google Scholar 

  27. E. Downar, L. Harris, L.L. Mickelborough, N. Shaikh, and I.D. Parson. Endocardial mapping of ventricular tachycardia in the intact human ventricle: Evidence for reentrant mechanisms. J. Am. Coll. Cardiol., 11: 783–791, 1988.

    Google Scholar 

  28. D.S. Echt, K. Armstrong, P. Schmidt, P.E. Oyer, E.B. Stinson, and R.A. Winkle. Clinical experience, complications, and survival in 70 patients with the automatic implantable cadioverter/defibrillator. Circulation, 71: 289–296, 1985.

    Google Scholar 

  29. D.E. Euler. Norepinephrine release by ventricular stimulation: Effect on fibrillation thresholds. Am. J. Physiol., 238: H406-H413, 1980.

    Google Scholar 

  30. D.E. Euler and E.N. Moore. Continuous fractionated electrical activity after stimulation of the ventricles during the vulnerable period: Evidence for local reentry. Am. J. Cardiol., 46: 783–791, 1980.

    Google Scholar 

  31. R. FitzHugh. Mathematical models of excitation and propagation in nerve. In H.P. Schwann, editor, Biological Engineering, pages 1–85. McGraw-Hill, New York, 1969.

    Google Scholar 

  32. P. Foerster, S.C. Muller, and B. Hess. Critical size and curvature of wave formation in an excitable chemical medium. Proc. Natl. Acad. Sci. USA, 86: 6831–6834, 1989.

    ADS  Google Scholar 

  33. P. Foerster, S.C. Muller, and B. Hess. Curvature and propagation velocity of chemical waves. Science, 241: 685–687, 1988.

    ADS  Google Scholar 

  34. D.A. Frank-Kamenetsky. Diffusion and Heat Exchange in Chemical Kinetics. Nauka, Moscow, 1955.

    Google Scholar 

  35. M.R. Franz and A. Costard. Frequency-dependent effects of quinidine on the relationship between action potential duration and refractoriness in the canine heart in situ. Circulation, 77: 1177–1184, 1988.

    Google Scholar 

  36. D.W. Frazier, W. Krassowska, P-S Chen, et al. Transmural activations and stimulus potentials in three-dimensional anisotropic canine myocardium. Circ. Res., 63: 135–146, 1988.

    Google Scholar 

  37. D.W. Frazier, W. Krassowska, P-S Chen, et al. Extracellular field required for excitation in three-dimensional anisotropic canine myocardium. Circ. Res., 63: 147–164, 1988.

    Google Scholar 

  38. D.W. Frazier, P.D. Wolf, J.M. Wharton, A.S.L. Tang, W.M. Smith, and R.E. Ideker. Stimulus-induced critical point: Mechanism for the electrical initiation of reentry in normal canine myocardium. J. Clin. Invest., 83: 1039–1052, 1989.

    Google Scholar 

  39. E.S. Gang, J.T. Bigger, and F.D. Livelli. A model of chronic ischemic arrhythmias: The relation between electrically inducible ventricular tachycardia, VFT, and myocardial infarct size. Am. J. Cardiol., 50: 469–477, 1982.

    Google Scholar 

  40. M. Gerhardt, H. Schuster, and J.J. Tyson. A cellular automaton model of excitable media including the effects of curvature and dispersion. Science, 247: 1563–1566, 1990.

    MathSciNet  ADS  Google Scholar 

  41. P. Gray, K. Showalter, and S.K. Scott. Propagating reaction-diffusion fronts with cubic autocatalysis: The effects of reversibility. J. Chim. Phys., 84: 1329–1333, 1987.

    Google Scholar 

  42. R.L. DeHaan and A.T. Winfree. Unpublished laboratory books, 1973.

    Google Scholar 

  43. J. Han. Ventricular vulnerability during acute coronary occlusion. Am. J. Cardiol, 24: 857–864, 1969.

    Google Scholar 

  44. J. Han, G.P. deJalon, and G.K. Moe. Fibrillation threshold of premature ventricular responses. Circ. Res., 18: 18–25, 1965.

    Google Scholar 

  45. J. Han, D. Millet, B. Chizzonitti, and G.K. Moe. Temporal dispersion of recovery of excitability in atrium and ventricle as a function of heart rate. Am. Heart J., 71: 481–487, 1966.

    Google Scholar 

  46. J. Han and G.K. Moe. Cumulative effects of cycle length on refractory periods of cardiac tissues. Am. J. Physiol., 217: 106–109, 1969.

    Google Scholar 

  47. J. Han and G.K. Moe. Nonuniform recovery of excitability in ventricular muscle. Circ. Res., 14: 44–60, 1964.

    Google Scholar 

  48. C. Henze, E. Lugosi, and A.T. Winfree. Stable helical organizing centers in excitable media. Can. J. Phys., 68: 683–710, 1990.

    MathSciNet  ADS  MATH  Google Scholar 

  49. J. Herbschleb, I. van derTweel, and F. Meijler. The apparent repetition frequency of ventricular fibrillation. Comput. Cardiol., 249–252, 1982.

    Google Scholar 

  50. J. Herbschleb, I. van derTweel, and F. Meijler. The illusion of travelling wavefronts during ventricular fibrillation. Circulation, 68 (Supp. III): 343, 1983.

    Google Scholar 

  51. J. Heschler and R. Speicher. Regular and chaotic behavior of cardiac cells stimulated at frequencies between 2 and 20 hz. Eur. Biophys., 17: 273–280, 1989.

    Google Scholar 

  52. A.L. Hodgkin and S. Nakajima. The effect of diameter on the electrical constants of frog skeletal muscle fibers. J. Physiol, 221: 105–120, 1972.

    Google Scholar 

  53. B.F. Hoffman and P.F. Cranefield. Electrophysiology of the Heart. McGraw-Hill, New York, 1960.

    Google Scholar 

  54. L.N. Horowitz, J.F. Spear, and E.N. Moore. Relation of endocardial and epicardial ventricular fibrillation thresholds of the right and left ventricles. Am. J. Cardiol, 48: 698–701, 1981.

    Google Scholar 

  55. W. Jahnke, W.E. Skaggs, and A.T. Winfree. Chemical vortex dynamics in the Belousov-Zhabotinsky reaction and in the 2-variable Oregonator model. J. Phys. Chem., 93: 740–749, 1989.

    Google Scholar 

  56. P. Jaillon, I. Schnittger, J.C. Griffin, and R.A. Winkle. The relationship between the repetitive extrasystole threshold and the ventricular fibrillation threshold in the dog. Circ. Res., 46: 599–605, 1980.

    Google Scholar 

  57. M.J. Janse, A.G. Kleber, A. Capucci, R. Coronel, and F. Wilms-Schopman. Electrophysiological basis for arrhythmias caused by acute ischemia. J. Mol. Cell. Cardiol., 18: 339–355, 1986.

    Google Scholar 

  58. M.J. Janse, A.B.M. van der Steen, R.T. van Dam, and D. Durrer. Refractory period of the dog’s ventricular myocardium following sudden changes in frequency. Circ. Res., 24: 251–262, 1969.

    Google Scholar 

  59. M.J. Janse, F. Wilms-Schopman, R.J. Wilensky, and J. Tranum-Jensen. Role of the subendocardium in arrhythmogenesis during acute ischemia. In D.P. Zipes and J. Jalife, editors, Cardiac Electrophysiology and Arrhythmias, pages 353–362. Grune & Stratton, Orlando, 1985.

    Google Scholar 

  60. M.J. Janse and A.L. Wit. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol. Rev., 69: 1049–1169, 1989.

    Google Scholar 

  61. M. Jones and L.A. Geddes. Strength-duration curves for cardiac pacemaking and ventricular fibrillation. Cardiovasc. Res. Ctr. Bull., 15: 101–112, 1977.

    Google Scholar 

  62. R.W. Joyner, B.M. Ramza, R.C. Tan, J. Matsuda, and T.T. Do. Effects of tissue geometry on initiation of a cardiac action potential. Am. J. Physiol., 256: H391-H403, 1989.

    Google Scholar 

  63. R.W. Joyner, R. Veenstra, D. Rawling, and A. Chorro. Propagation through electrically coupled cells: Effects of a resistive barrier. Biophys. J., 45: 1017–1025, 1984.

    Google Scholar 

  64. R.W. Joyner, M. Westerfield, and J.W. Moore. Effects of cellular geometry on current flow during a propagated action potential. Biophys. J., 31: 183–194, 1980.

    Google Scholar 

  65. A. Kadish, M. Shinnar, E.N. Moore, J.H. Levine, C.W. Balke, and J.F. Spear. Interaction of fiber orientation and direction of impulse propagation with anatomic barriers in anisotropic canine myocardium. Circulation, 78: 1478–1494, 1988.

    Google Scholar 

  66. D.T. Kaplan, J.M. Smith, B.E.H. Saxberg, and R.J. Cohen. Nonlinear dynamics in cardiac conduction. Math. Biosci., 90: 19–48, 1988.

    MathSciNet  MATH  Google Scholar 

  67. P.P. Karpawich, M. Hakimi, D.L. Cavitt, and R. Schallhorn. Clinical comparison of low threshold platinized and new steroid-eluting platinized transvenous pacing leads in children. Am. J. Cardiol., 64: 423, 1989.

    Google Scholar 

  68. M. Kawato, A. Yamanaka, S. Urushibara, O. Nagata, H. Irisawa, and R. Suzuki. Simulation analysis of excitation conduction in the heart: propagation of excitation in different tissues. J. Theor. Biol., 120: 389–409, 1986.

    Google Scholar 

  69. J.P. Keener. Causes of propagation failure in excitable cells. In R. Rensing, editor, Temporal Disorder in Human Oscillatory Systems, pages 134–140, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  70. J.P. Keener. The effects of gap junctions in propagation in myocardium: A modified cable theory. In J. Jalife, editor, Mathematical Approaches to Cardiac Arrhythmias. Ann. NY Acad. Sci., 591: 257–277, 1990.

    Google Scholar 

  71. J.P. Keener. A geometrical theory for spiral waves in excitable media. SIAM J. Appl Math., 46: 1039–1056, 1986.

    MathSciNet  MATH  Google Scholar 

  72. J.P. Keener. A mathematical model for the vulnerable phase in myocardium. Math. Biosci., 90: 3–18, 1988.

    MathSciNet  MATH  Google Scholar 

  73. J.P. Keener. Propagation and its failure in coupled systems of discrete excitable cells. SIAM. J. Appl. Math., 47: 556–572, 1987.

    MathSciNet  MATH  Google Scholar 

  74. J.P. Keener and J.J. Tyson. Spiral waves in the Belousov-Zhabotinsky reaction. Physica D., 21: 307–324, 1986.

    MathSciNet  ADS  MATH  Google Scholar 

  75. P.R. Kowey, R.L. Verrier, and B. Lown. The repetitive extrasystole as an index of vulnerability during myocardial ischemia in the canine heart. Am. Heart J., 106: 1321–1325, 1983.

    Google Scholar 

  76. J.B. Kramer, J.E. Saffitz, F.X. Witkowski, and P.B. Corr. Intramural reentry as a mechanism of ventricular tachycardia during evolving canine myocardial infarction. Circ. Res., 56: 736–754, 1985.

    Google Scholar 

  77. V.I. Krinsky and K.I. Agladze. Interaction of rotating waves in an active chemical medium. Physica D., 8: 50–56, 1983.

    ADS  Google Scholar 

  78. L. Kuhnert, H.J. Krug, and L. Pohlmann. Velocity of trigger waves and temperature dependence of autowave processes in the Belousov-Zhabotinsky reaction. J. Phys. Chem., 89: 2022–2026, 1985.

    Google Scholar 

  79. E. Lepeschkin, J.L. Jones, S. Rush, and R.E. Jones. Local potential gradients as a unifying measure for thresholds of stimulation, standstill, tachyarrhythmia and fibrillation appearing after strong capacitor discharges. Adv. Cardiol., 21: 268–278, 1978.

    Google Scholar 

  80. M.D. Lesh, M. Pring, and J.F. Spear. Cellular uncoupling can unmask dispersion of action potential duration in ventricular myocardium. Circ. Res., 65: 1426–1440, 1989.

    Google Scholar 

  81. C. Lesigne, B. Levy, R. Saumont, P. Birkui, A. Bardou, and B. Rubin. An energy-time analysis of ventricular fibrillation and defibrillation thresholds with internal electrodes. Med. Biol. Eng., 14: 617–622, 1976.

    Google Scholar 

  82. B. Lown, M.D Klein, and P.I. Hershberg. Coronary and precoronary care. Am. J. Medicine, 46: 705–724, 1969.

    Google Scholar 

  83. E. Lugosi. Analysis of meander in the Zykov kinetics. Physica D., 40: 331–337, 1989.

    MathSciNet  ADS  MATH  Google Scholar 

  84. R.J. Matta, R.L. Verrier, and B. Lown. Repetitive extrasystole as an index of vulnerability to ventricular fibrillation. Am. J. Physiol., 230: 1469–1473, 1976.

    Google Scholar 

  85. W.C. McDaniel and J.C. Schuder. The cardiac ventricular defibrillation threshold: Inherent limitations in its application and interpretation. Med. Instrum., 21: 170–176, 1987.

    Google Scholar 

  86. H.P. McKean. Nagumo’s equation. Adv. Math, 4: 209–223, 1970.

    MathSciNet  MATH  Google Scholar 

  87. E.L. Michelson, J.F. Spear, and E.N. Moore. Initiation of sustained ventricular tachyarrhythmias in a canine model of chronic myocardial infarction: Importance of the site of stimulation. Circulation, 63: 776–784, 1981.

    Google Scholar 

  88. M. Mirowski. The automatic cardioverter-defibillator: an overview. J. Am. Coll. Card., 6: 461–466, 1985.

    Google Scholar 

  89. G.K. Moe, A.S. Harris, and C.J. Wiggers. Analysis of initiation of fibrillation by electrographic studies. Am. J. Physiol., 134: 473–492, 1941.

    Google Scholar 

  90. G.K. Moe, W.C. Rheinboldt, and J.A. Abildskov. A computer model of atrial fibrillation. Am. Heart J., 67: 200–220, 1964.

    Google Scholar 

  91. P.B. Monk and H.G. Othmer. Relay, oscillations and wave propagation in a model of Dictyostelium discoideum. Lect. Math. Life Sci., 21: 87–122, 1989.

    MathSciNet  Google Scholar 

  92. E.N. Moore and J.F. Spear. Ventricular fibrillation threshold. Arch. Int. Medicine, 135: 446–453, 1975.

    Google Scholar 

  93. S.C. Muller, T. Plesser, and B. Hess. Two-dimensional spectrophotometry of spiral wave propagation in the Belousov-Zhabotinsky reaction II. Geometric and kinematic patterns. Physica D., 24: 87–96, 1987.

    ADS  Google Scholar 

  94. S.C. Muller, T. Plesser, and B. Hess. Two-dimensional spectrophotometry of spiral wave propagation in the Belousov-Zhabotinsky reaction I. Experiments and digital data representation. Physica D., 24: 71–86, 1987.

    ADS  Google Scholar 

  95. A. Nitzan, P. Ortoleva, and J. Ross. Nucleation in systems with multiple stationary states. Faraday Symp. Chem. Soc, 9: 241–253, 1974.

    Google Scholar 

  96. O. Orias, C.M. Brooks, E.E. Suckling, J.L. Gilbert, and A.A. Siebens. Excitability of the mammalian ventricle throughout the cardiac cycle. Am. J. Physiol., 163: 272–282, 1950.

    Google Scholar 

  97. D.G. Palmer. Interruption of T waves by premature QRS complexes and the relationship of this phenomenon to ventricular fibrillation. Am. Heart J., 63: 367–373, 1962.

    Google Scholar 

  98. A.M. Pertsov, A.V. Panfilov, and F.U. Medvedeva. Instabilities of autowaves in excitable media associated with critical curvature phenomena. Biofizika, 28: 100–102, 1983.

    Google Scholar 

  99. M.F. Rattes, D.L. Jones, A.D. Sharma, and G.J. Klein. Defibrillation threshold: A simple and quantitative estimate of the ability to defibrillate. PACE, 10: 70–77, 1987.

    Google Scholar 

  100. F.A. Roberge, A. Vinet, and B. Victorri. Reconstruction of propagated electrical activity with a two-dimensional model of anisotropic heart muscle. Circ. Res., 58: 461–475, 1986.

    Google Scholar 

  101. D.E. Roberts and A.M. Scher. Effect of tissue anisotropy on extracellular potential fields in canine myocardium in situ. Circ. Res., 50: 342–351, 1982.

    Google Scholar 

  102. Y. Rudy and W.-L. Quan. A model study of the effects of the discrete cellular structure on electrical propagation on cardiac tissue. Circ. Res., 61: 815–823, 1987.

    Google Scholar 

  103. S. Rush, J.A. Abildskov, and R. McFee. Resistivity of body tissues at low frequencies. Circ. Res., 12: 40–50, 1963.

    Google Scholar 

  104. S. Rush, E. Lepeshkin, and A. Gregoritsch. Current distribution from defibrillation electrodes in a homogeneous torso model. J. Electrophysiol., 2(4): 331–342, 1969.

    Google Scholar 

  105. W.A.H. Rushton. Initiation of the propagated disturbance. Proc. Roy. Soc. Lond. B., 106: 210–243, 1937.

    ADS  Google Scholar 

  106. G. Salama, R. Lombardi, and J. Elson. Maps of optical action potentials and NADH fluorescence in intact working hearts. Am. J. Physiol., 252: H384–394, 1987.

    Google Scholar 

  107. M. Schalij. Anisotropic Conduction and Ventricular Tachycardia. Ph.D. thesis, University of Limburg, 1988.

    Google Scholar 

  108. A.C. Scott. The electrophysics of a nerve fiber. Rev. Mod. Physics, 47: 487–533, 1975.

    ADS  Google Scholar 

  109. A.C. Scott. Neurophysics. John Wiley & Sons, New York, 1977.

    Google Scholar 

  110. G.H. Sharp and R.W. Joyner. Simulated propagation of cardiac action potentials. Biophys. J., 31: 403–424, 1980.

    ADS  Google Scholar 

  111. N. Shibata, P-S Chen, E.G. Dixon, et al. Influence of shock strength and timing on induction of ventricular arrhythmias in dogs. Am. J. Physiol., 255: H891-H901, 1988.

    Google Scholar 

  112. K. Showalter and J.J. Tyson. Luther’s 1906 discovery and analysis of chemical waves. J. Chem. Educ., 64: 742–744, 1987.

    Google Scholar 

  113. N.E. Shumway, J.A. Johnson, and R.J. Stish. The study of ventricular fibrillation by threshold determinations. J. Thorac. Surg., 34: 643–653, 1957.

    Google Scholar 

  114. W.E. Skaggs, E. Lugosi, and A.T. Winfree. Stable vortex rings of excitation in neuroelectric media. IEEE Trans. Circ. Sys., 35(7): 784–787, 1988. There is a typographical in the equation: parameters 0.7 and 0.5 are interchanged.

    Google Scholar 

  115. W.E. Skaggs and A.T. Winfree. Unpublished computations. 1987.

    Google Scholar 

  116. W.E. Skaggs and A.T. Winfree. Unpublished labatory book. 1988.

    Google Scholar 

  117. J.M. Smith and R.J. Cohen. Simple finite-element model accounts for wide range of cardiac dysrhythmias. Proc. Natl. Acad. Sci. USA, 81: 233–237, 1984.

    ADS  Google Scholar 

  118. M.S. Spach and P.C. Dolber. The relation between discontinuous propagation in anisotropic cardiac muscle and the vulnerable period of reentry, In D.P. Zipes and J. Jalife, editors, Cardiac Electrophysiology and Arrhythmias, pages 241–252. Grune & Stratton, Orlando, FL, 1985.

    Google Scholar 

  119. M.S. Spach, P.C. Dolber, and P.A.W. Anderson. Multiple regional differences in cellular properties that regulate repolarization and contraction in the right atrium of adult and newborn dogs. Circ. Res., 65: 1594–1611, 1989.

    Google Scholar 

  120. M.S. Spach, P.C. Dolber, and J.F. Heidlage. Interaction of inhomogeneities of repolarization with anisotropic propagation in dog atria. Circ. Res., 65: 1612–1631, 1989.

    Google Scholar 

  121. M.S. Spach, W.T. Miller, D.B. Geselowitz, R.C. Barr, J.M. Kootsey, and E.A. Johnson. The discontinuous nature of propagation in normal canine cardiac muscle. Circ. Res., 48: 39–54, 1981.

    Google Scholar 

  122. G.F. Starmer and R.E. Whalen. Current density and electrically induced ventricular fibrillation. Med. Instrum., 7: 3–7, 1973.

    Google Scholar 

  123. B.M. Steinhaus, K.W. Spitzer, M.J. Burgess, and J.A. Abildskov. Electrotonic interactions in a model of anisotropic cardiac tissue. In Proceedings of the 1986 Society for Computer Simulation, pages 421–426, Reno, NV, 1986.

    Google Scholar 

  124. J. Tamargo, B. Moe, and G.K. Moe. Interaction of sequential stimuli applied during the relative refractory period in relation to determination of fibrillation threshold in the canine ventricle. Circ. Res., 37: 534–541, 1975.

    Google Scholar 

  125. P.J. Tchou, N. Kadri, J. Anderson, J.A. Caceres, M. Jazayeri, and M. Akhtar. Automatic implantable cardioconverter/defibrillators and survival of patients with left ventricular dysfunction and malignant ventricular arrhythmias. Ann. Int. Med., 109: 529–534, 1988.

    Google Scholar 

  126. K.J. Tomchik and P.N. Devreotes. Adenosine 3’, 5’-monophosphate waves in Dictyostelium discoideum: A demonstration of isotope dilution-fluorography. Science, 212: 443–446, 1981.

    ADS  Google Scholar 

  127. N. Tsuboi, I. Kodama, J. Toyama, and K. Yamada. Anisotropic conduction properties of canine ventricular muscles. Jap. Circ. J., 49: 487–498, 1985.

    Google Scholar 

  128. J.J. Tyson, K.A. Alexander, Manoranjan V.S., and J.D. Murray. Spiral waves of cyclic AMP in a model of slime mold aggregation. Physica D., 34: 193–207, 1989.

    MathSciNet  ADS  MATH  Google Scholar 

  129. J.J. Tyson and P.C. Fife. Target patterns in a realistic model of the Belousov-Zhabotinskii reaction. J. Chem. Phys., 73: 2224–2237, 1980.

    MathSciNet  ADS  Google Scholar 

  130. J.J. Tyson and J.P. Keener. Singular perturbation theory of traveling waves in excitable media (a review). Physica D, 32: 327–361, 1988.

    MathSciNet  ADS  MATH  Google Scholar 

  131. J.J. Tyson and J.D. Murray. Cyclic-AMP waves during aggregation of dictyostelium amoebae. Development, 106: 421–6, 1989.

    Google Scholar 

  132. F.J.L. van Capelle. Slow Conduction and Cardiac Arrhythmias. Ph.D. thesis, University of Amsterdam, 1983.

    Google Scholar 

  133. F.J.L. van Capelle and M.A. Allessie. Computer simulation of anisotropic impulse formation. In A. Goldbeter, editor, Cell to Cell Signalling: From Experiments to Theoretical Models, pages 577–588. Academic Press, London 1989.

    Google Scholar 

  134. R.Th. van Dam, D. Durrer, J. Strackee, and H. van der Tweel. The excitability cycle of the dog’s left ventricle determined by anodal, cathodal, and bipolar stimulation. Circ. Res., 4: 196–204, 1956.

    Google Scholar 

  135. A. van Oosterom, R.W. de Boer, and R.Th. van Dam. Intramural resistivity of cardiac tissue. MoL Biol Eng. Comput., 17: 337–343, 1979.

    Google Scholar 

  136. R.A. van Tyn and L.D. MacLean. Ventricular fibrillation threshold. Am. J. Physiol201: 457–461, 1961.

    Google Scholar 

  137. W.D. Voorhees, K.S. Foster, L.A. Geddes, and C.F. Babbs. Safety factor for precordial pacing: Minimum current thresholds for pacing and for ventricular fibrillation by vulnerable-period stimulation. PACE, 7: 356–360, 1984.

    Google Scholar 

  138. R. Wegria, G.K. Moe, and C.J. Wiggers. Comparison of the vulnerable periods and fibrillation thresholds of normal and idioventricular beats. Am. J. Physiol., 133: 651–657, 1941.

    Google Scholar 

  139. R. Wegria and C.J. Wiggers. Factors determining the production of ventricular fibrillation by direct currents. Am. J. Physiol., 131: 104–118, 1940.

    Google Scholar 

  140. T.C. West, E.L. Frederickson, and D.W. Amory. Single fiber recording of the ventricular response to induced hypothermia in the anaesthetized dog. Circ. Res., 7: 880–888, 1959.

    Google Scholar 

  141. J.M. Wharton, P.D. Wolf, P-S Chen, et al. Is an absolute minimum potential gradient required for ventricular defibrillation? (abstract). Circulation, 74: 11–342, 1986.

    Google Scholar 

  142. J.M. Wharton, P.D. Wolf, N. Danieley, et al. Cardiac potential and potential gradient fields generated by single, combined, and sequential shocks during ventricular defibrillation, (submitted) 1990.

    Google Scholar 

  143. W.D. Widman, L. Eisenberg, S. Levitsky, A. Mauro, and W.W. Glenn. Ventricular fibrillation complicating electrical pacemaking: A comparison of direct current and radio-frequency pacemaker stimulation. Surg. For., 14: 260–263, 1963.

    Google Scholar 

  144. C.J. Wiggers and R. Wegria. Quantitative measurement of the fibrillation thresholds of the mammalian ventricles with observations on the effect of procaine. Am. J. Physiol., 131: 29–308, 1940.

    Google Scholar 

  145. C.J. Wiggers, R. Wegria, and B. Pinera. The effects of myocardial ischemia on the fibrillation threshold-the mechanism of spontaneous ventricular fibrillation following coronary occlusion. Am. J. Physiol., 131: 309–316, 1940.

    Google Scholar 

  146. A.T. Winfree. Alternative stable rotors in an excitable medium. Proceedings of Puschino USSR Meeting on Autowaves, Physica D., 1991. (in press.)

    Google Scholar 

  147. A.T. Winfree. Discrete spectrum of rotor periods in an excitable medium. Phys. Lett. A., 149: 203–206, 1990.

    MathSciNet  ADS  Google Scholar 

  148. A.T. Winfree. Electrical instability in cardiac muscle: Phase singularities and rotors. J. Theor. Biol., 138: 353–405, 1989.

    MathSciNet  Google Scholar 

  149. A.T. Winfree. The Geometry of Biological Time. Springer-Verlag, New York, 1980.

    MATH  Google Scholar 

  150. A.T. Winfree. Multiple stable solutions to the kinetic equations of an excitable medium. In: Integral Methods in Science and Engineering. Hemisphere, Washington, DC, 1991. (in press.)

    Google Scholar 

  151. A.T. Winfree. Organizing centers for chemical waves in two and three dimensions. In R. Field and M. Burger, editors, Oscillations and Traveling Waves in Chemical Systems, pages 441–472. John Wiley & Sons, New York, 1985.

    Google Scholar 

  152. A.T. Winfree. Rotors in normal ventricular myocardium: Einthoven lecture. 1990.

    Google Scholar 

  153. A.T. Winfree. Spiral waves of chemical activity. Science, 175: 634–636, 1972.

    ADS  Google Scholar 

  154. A.T. Winfree. Stable particle-like solutions to the nonlinear wave equations of three-dimensional excitable media. SIAM Review, 32: 1–53, 1990.

    MathSciNet  MATH  Google Scholar 

  155. A.T. Winfree. Stably rotating patterns of reaction and diffusion. Prog. Theor. Chem., 4: 1–51, 1978.

    Google Scholar 

  156. A.T. Winfree. Sudden cardiac death. Sci. Am., 248: 144–161, 1983.

    Google Scholar 

  157. A.T. Winfree. Ventricular reentry in three dimensions. In D.P. Zipes and J. Jalife, editors, Cardiac Electrophysiology, from Cell to Bedside, pages 224–234, WB Saunders Co, Philadelphia, 1990.

    Google Scholar 

  158. A.T. Winfree. Vortex action potentials in normal ventricular muscle. In J. Jalife, editor, Mathematical Approaches to Cardiac Arrhythmias. Ann. NY Acad. Sci., 591: 190–207, 1990.

    Google Scholar 

  159. A.T. Winfree. When Time Breaks Down: The Three-Dimensional Dynamics of Electrochemical Waves and Cardiac Arrhythmias. Princeton University Press, Princeton, 1987.

    Google Scholar 

  160. F.X. Witkowski and P.A. Penkoske. Activation patterns during ventricular fibrillation. In J. Jalife, editors, Mathematical Approaches to Cardiac Arrhythmias. Ann. NY Acad. Sci., 591: 219–231, 1990.

    Google Scholar 

  161. F.X. Witkowski, P.A. Penkoske, and R. Plonsey. Mechanism of cardiac defibrillation in open-chest dogs using unipolar DC-coupled simultaneous activation and shock potential recordings. Circulation, 82: 244–60, 1990.

    Google Scholar 

  162. S. Yabe, W.M. Smith, J.P. Daubert, P.D. Wolf, and R.E. Ideker. The strength of monophasic and biphasic shocks that cause conduction block. J. Am. Coll. Cardiol., 13: 67A, 1989.

    Google Scholar 

  163. M.S. Yoon, J. Han, and R.A. Fabregas. Effect of ventricular aberrancy on fibrillation threshold. Am. Heart J., 89: 599–604, 1975.

    Google Scholar 

  164. A.M. Zhabotinsky. A study of self-oscillatory chemical reaction. III. Space behavior. In B. Chance, E.K. Pye, A.K. Ghosh, and B. Hess, editors, Biological and Biochemical Oscillators. Academic Press, New York, 1978.

    Google Scholar 

  165. X. Zhou, J.P. Daubert, P.D. Wolf, W.M. Smith, and R.E. Ideker. Importance of the shock electric field for defibrillation efficacy. Circulation, 78: 11–219, 1986.

    Google Scholar 

  166. X. Zhou, P.D. Wolf, D.L. Rollins, W.M. Smith, and R.E. Ideker. Potential gradient needed for defibrillation with monophasic and biphasic shocks. PACE, 12: 651, 1989.

    Google Scholar 

  167. G. Zuanetti, R.H. Hoyt, and P.B. Corr. β-adrenergic mediated influences on microscopic conduction in epicardial regions overlying infarcted myocardium. Circ. Res., 67: 284–302, 1990.

    Google Scholar 

  168. V.S. Zykov. Simulation of Wave Processes in Excitable Media. Manchester University Press, Manchester, England, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Winfree, A.T. (1991). Estimating the Ventricular Fibrillation Threshold. In: Glass, L., Hunter, P., McCulloch, A. (eds) Theory of Heart. Institute for Nonlinear Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3118-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3118-9_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7803-0

  • Online ISBN: 978-1-4612-3118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics