Skip to main content

Ionic Basis of the Wenckebach Phenomenon

  • Chapter
Theory of Heart

Part of the book series: Institute for Nonlinear Science ((INLS))

Abstract

We studied the ionic basis of slow recovery of excitability and the rate-dependent activation failure in enzymatically dissociated guinea pig ventricular myocytes and in numerical simulations using a modified version of the Beeler and Reuter model. In addition, appropriate parameters derived from biological and numerical voltage and current clamp experiments were used to devise an analytical model for diastolic recovery of excitability on the basis of the equations for current distribution in a resistive-capacitive circuit. Iteration of the analytical model equations gave rise to dynamics that closely resembled the experimentally obtained phaselocking patterns for repetitive stimulation of the ventricular cell. The results strongly suggest that slow deactivation of the delayed rectifier current (iK) determines the time-dependent recovery of excitability during diastole while the inward rectifier (iK 1) determines the amplitude and shape of depolarizations within the subthreshold range. The kinetics and voltage-dependence of both currents are responsible for the development of rate-dependent phase-locking patterns and of Wenckebach periodicity in the ventricular myocyte.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Antzelevitch, J. Jalife, and G.K. Moe. Characteristics of reflection as a mechanism of reentrant arrhythmias and its relationship to parasystole. Circulation, 61:182–191, 1980.

    Google Scholar 

  2. C. Antzelevitch and G.K. Moe. Electrotonically mediated delayed conduction and reentry in relation to “slow” responses in mammalian ventricular conducting tissue. Circ. Res., 49:1129–1139, 1981.

    Google Scholar 

  3. G.W. Beeler and H. Reuter. Reconstruction of the action potential of ventricular myocardial fibers. J. Physiol, 268:177–210, 1977.

    Google Scholar 

  4. Hoffman B.F. and P.F. Cranefield. Elecirophysiology of the Heart. McGraw-Hill, New York, 1960.

    Google Scholar 

  5. M. Delmar, L. Glass, D.C. Michaels, and J. Jalife. Ionic bases and analytical solution of the Wenckebach phenomenon in guinea pig ventricular myocytes. Cire. Res., 65:775–788, 1989.

    Google Scholar 

  6. M. Delmar, D.C. Michaels, and J. Jalife. Slow recovery of excitability and the Wenckebach phenomenon in the single guinea pig ventricular myocyte. Circ. Res., 65:761–774, 1989.

    Google Scholar 

  7. N. El-Sherif, B.J. Scherlag, R. Lazzara, and P. Samet. Pathophysiology of tachycardia-and bradycardia-dependent block in the canine proximal His-Purkinje system after acute myocardial ischemia. Am. J. Cardiol., 33:529–540, 1974.

    Article  Google Scholar 

  8. W. His. Ein Fall von Adams-Stokes’scher Krankeit mit ungleichzeitigem Schlagen der Vorhofe u. Herzkammern (Herzblock). Deutsch Arehiv. Klin. Med., 64:316–331, 1889.

    Google Scholar 

  9. J. Jalife. The sucrose gap preparation as a model of AV nodal transmission: Are dual pathways necessary for reciprocation and AV nodal echoes? PACE, 6:1106–1122, 1983.

    Article  Google Scholar 

  10. J. Jalife and G.K. Moe. Excitation, conduction and reflection of impulses in isolated bovine and canine cardiac Purkinje fibers. Circ. Res., 49:233–247, 1981.

    Google Scholar 

  11. L.V. Katz and A. Dick. Clinical Electrocardiography, Part I. The Arrhythmias. Lea and Febiger, Philadelphia, 1956.

    Google Scholar 

  12. J.P. Keener. On cardiac arrhythmias: AV conduction block. J. Math. Biol., 12:215–225, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  13. M.N. Levy, PJ. Martin, H. Zieske, and D. Adler. Role of positive feedback in the atrioventricular nodal Wenckebach phenomenon. Circ. Res., 24:697–710, 1974.

    Google Scholar 

  14. S.L. Lipsius. Electrotonic interactions in delayed propagation and block within the guinea pig SA node. Am. J. Physiol. (Heart Circ. Physiol), H7-H16, 1983.

    Google Scholar 

  15. J. Merideth, C. Mendez, W.J. Mueller, and G.K. Moe. Electrical excitability of atrioventricular nodal cells. Circ. Res., 23:69–85, 1968.

    Google Scholar 

  16. W. Mobitz. Uber die unvollstandige storung der erregungsuberleitung zwischen vorhof und kammer des menschlichen herzens. Zeitschr. Ges. Exper. Med., 41:180–237, 1924.

    Article  Google Scholar 

  17. de Carvalho A. Paes and D.F. de Almeida. Spread of activity through the atrioventricular node. Circ. Res., 8:801–809, 1960.

    Google Scholar 

  18. A. Rosenblueth. Functional refractory period of cardiac tissues. Am. J. Physiol., 194:171–183, 1958a.

    Google Scholar 

  19. A. Rosenblueth. Mechanism of the Wenckebach-Luciani cycles. Am. J. Physiol., 194:491–494, 1958b.

    Google Scholar 

  20. G.J. Rozanski, J. Jalife, and G.K. Moe. Determinants of postrepolarization refractoriness in depressed mammalian ventricular muscle. Circ. Res., 55:486–496, 1984.

    Google Scholar 

  21. A. Shrier, H. Dubarsky, M. Rosengarten, M.R. Guevara, S. Nattel, and L. Glass. Prediction of complex atrioventricular conduction rhythms in humans with use of the atrioventricular nodal recovery curve. Circulation, 76:1196–1205, 1987.

    Article  Google Scholar 

  22. Y. Tourneur. Action potential-like responses due to the inward rectifying potassium channel. J. Memb. Biol., 90:115–122, 1986.

    Article  Google Scholar 

  23. K.F. Wenckebach. Zur analyse des unregelmassigen pulses. II. Ueber den regelmassig intermittirenden puls. Zeitschr. Klin. Med., 37:475–488, 1899.

    Google Scholar 

  24. J.R. Wennemark and J.P. Bandura. Microelectrode study of Wenckebach periodicity in canine Purkinje fibers. Am. J. Cardiol., 33:390–398, 1974.

    Article  Google Scholar 

  25. S.S. Wong, A.L. Bassett, J.S. Cameron, K. Epstein, P. Kozlovskis, and R.J. Myerburg. Dissimilarities in the electrophysiological abnormalities of lateral border and central infarct zone cells after healing of myocardial infarction. Circ. Res., 51:486–493, 1982.

    Google Scholar 

  26. D.P. Zipes, C. Mendez, and G.K. Moe. Some examples of Wenckebach periodicity in cardiac tissues, with an appraisal of mechanisms. In M.V. Elizari and M.B. Rosenbaum, editors, Frontiers of Cardiac Electrophysiology, pages 357–375. Martinus Nijhoff, Boston, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Jalife, J., Delmar, M. (1991). Ionic Basis of the Wenckebach Phenomenon. In: Glass, L., Hunter, P., McCulloch, A. (eds) Theory of Heart. Institute for Nonlinear Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3118-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3118-9_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7803-0

  • Online ISBN: 978-1-4612-3118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics