Skip to main content

Iteration of the Human Atrioventricular (AV) Nodal Recovery Curve Predicts Many Rhythms of AV Block

  • Chapter
Theory of Heart

Part of the book series: Institute for Nonlinear Science ((INLS))

Abstract

The atrioventricular nodal recovery curve provides a quantitative description of how the conduction time through the atrioventricular node of a prematurely elicited atrial beat increases as the recovery time since the immediately preceding activation of the bundle of His decreases. This curve can be well approximated in human beings with normal atrioventricular nodal function by a single exponential function (the “standard” curve). Assuming that the response of the atrioventricular node to any atrial stimulus with a given recovery time during periodic pacing of the atrium is independent of the atrial rate, a simple equation (“map”) can be derived, using the recovery curve. The rhythm of atrioventricular conduction expected at any atrial rate is then obtained by numerically iterating this map on a digital computer. As the atrial rate is increased, rhythms resembling normal sinus rhythm, first-degree atrioventricular block, millisecond Wenckebach, Wenckebach periodicity, reverse Wenckebach periodicity, alternating Wenckebach periodicity, and higher grades of block are successively encountered. A mathematical theorem about the map is invoked to show that these are the only rhythms of conduction permitted. In addition, the order in which the various rhythms will appear as the atrial rate is increased as well as the ordering of blocked atrial beats within a given rhythm of block are also derived. Iteration using recovery curves other than the standard one leads to rhythms in which there is atypical Wenckebach, alternation of the conduction time, or coexistence of two different conduction times. Since this work puts into a common framework many different rhythms of atrioventricular conduction, it forms the beginnings of a “unified theory” of atrioventricular block.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.H. Anderson, K. Greenspan, and C. Fisch. Electrophysiologic studies on Wenckebach structures below the atrioventricular junction. Am. J. Cardiol., 30: 232–236, 1972.

    Article  Google Scholar 

  2. M.B. Berkinblit. The periodic blocking of impulses in excitable tissues. In I.M. Gelfand, V.S. Gurfinkel et al., Models of the Structural-Functional Organization of Certain Biological Systems, pages 155–189. MIT Press, Cambridge, 1971.

    Google Scholar 

  3. R. Berman. Reverse Wenckebach periods: Five cases of an unstable form of partial auriculoventricular block. Am. Heart 50: 211–217, 1955.

    Article  Google Scholar 

  4. J. Billette. Atrioventricular nodal activation during periodic premature stimulation of the atrium. Am. J. Physiol., 252: H163-H177, 1987.

    Google Scholar 

  5. J. Billette. Preceding His-atrial interval as a determinant of atrioventricular nodal conduction time in the human and rabbit heart. Am. J. Cardiol., 38: 889–896, 1976.

    Article  Google Scholar 

  6. J. Billette, R. Métayer, and M. St-Vincent. Selective functional characteristics of rate-induced fatigue in rabbit atrioventricular node. Circ. Res., 62: 790–799, 1988.

    Google Scholar 

  7. J. Billette and M. St-Vincent. Functional origin of rate-induced changes in atrioventricular nodal conduction time of premature beats in the rabbit. Can. J. Physiol. Pharmacol., 65: 2329–2337, 1987.

    Article  Google Scholar 

  8. D.R. Chialvo and J. Jalife. Non-linear dynamics of cardiac excitation and impulse propagation. Nature, 330: 749–752, 1987.

    Article  ADS  Google Scholar 

  9. E.L. de Beer. Atrioventricular Conduction. An Experimental and Theoretical Study of Nodal Action Potentials and Propagation Times. Ph.D. thesis, University of Utrecht, Utrecht, the Netherlands, 1977.

    Google Scholar 

  10. G.M. Decherd and A. Ruskin. The mechanism of the Wenckebach type of A-V block. Br. Heart J., 8: 6–16, 1946.

    Article  Google Scholar 

  11. P. Denes, D. Wu, R. Dhingra, F. Amat-y-Leon, C. Wyndham, and K.M. Rosen. Dual atrioventricular nodal pathways. A common electrophysiological response. Br. Heart 37: 1069–1076, 1975.

    Article  Google Scholar 

  12. R.C. Dhingra, K.M. Rosen, and S.H. Rahimtoola. Normal conduction intervals and responses in sixty-one patients using His bundle recording and atrial pacing. Chest, 64: 55–59, 1973.

    Article  Google Scholar 

  13. N. El-Sherif, J. Aranda, B. Befeler, and R. Lazzara. Atypical Wenckebach periodicity simulating Mobitz II AV block. Br. Heart J., 40: 1376–1383, 1978.

    Article  Google Scholar 

  14. N. El-Sherif, B.J. Scherlag, and R. Lazzara. Pathophysiology of second degree atrioventricular block: A unified hypothesis. Am. J. Cardiol., 35: 421–434, 1975.

    Article  Google Scholar 

  15. T.W. Englemann. Beobachtungen und Versuche am suspendierten Herzen. Zweite Abhandlung. Ueber die Leitung der Bewegungsreize im Herzen. Arch. Ges. Physiol., 56: 149–202, 1894.

    Article  Google Scholar 

  16. M. Feingold, D.L. Gonzalez, O. Piro, and H. Viturro. Phase locking, period doubling, and chaotic phenomena in externally driven excitable systems. Phys. Rev., A 37: 4060–4063, 1988.

    ADS  Google Scholar 

  17. G.R. Ferrier and P.E. Dresel. Relationship of the functional refractory period to conduction in the atrioventricular node. Circ. Res., 35: 204–214, 1974.

    Google Scholar 

  18. C. Fisch and E.F. Steinmetz. Supernormal phase of atrioventricular (A-V) conduction due to potassium. A-V alternans with first-degree A-V block. Am. Heart J., 62: 211–220, 1961.

    Article  Google Scholar 

  19. M.R. Guevara. Chaotic Cardiac Dynamics. Ph.D. thesis, McGill University, Montreal, 1984.

    Google Scholar 

  20. M.R. Guevara. Spatiotemporal rhythms of block in an ionic model of cardiac Purkinje fibre. In M. Markus, S.C. Müller and G. Nicolis, editors, From Chemical to Biological Organization, pages 273–281. Springer, Berlin, 1988.

    Google Scholar 

  21. M.R. Guevara and A. Shrier. Phase resetting in a model of cardiac Purkinje fiber. Biophys. J., 52: 165–175, 1987.

    Article  ADS  Google Scholar 

  22. M.R. Guevara, F. Alonso, D. Jeandupeux, and A.C.G. van Ginneken. Alternans in periodically stimulated isolated ventricular myocytes: Experiment and model. In A. Goldbeter, editor, Cell to Cell Signalling: From Experiments to Theoretical Models, pages 551–563. Academic Press, London, 1989.

    Google Scholar 

  23. M.R. Guevara, L. Glass, and A. Shrier. Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. Science, 214: 1350–1353, 1981.

    Article  ADS  Google Scholar 

  24. M.R. Guevara, D. Jeandupeux, F. Alonso, and N. Morissette. Wenckebach rhythms in isolated ventricular heart cells. In St. Pnevmatikos, T. Bountis and Sp. Pnevmatikos, editors, Singular Behavior and Nonlinear Dynamics, pages 629–642. World Scientific, Singapore, 1989.

    Google Scholar 

  25. M.R. Guevara, A. Shrier, and L. Glass. Chaotic and complex cardiac rhythms. In D.P. Zipes and J. Jalife, editors, Cardiac Electrophysiology: From Cell to Bedside., pages 192–201. Saunders, Philadelphia, 1990.

    Google Scholar 

  26. M.R. Guevara, A. Shrier, and L. Glass. Phase-locked rhythms in periodically stimulated heart cell aggregates. Am. J. Physiol., 254: H1-H10, 1988.

    Google Scholar 

  27. M.S. Halpern, G.J. Nau, R.J. Levi, M.V. Elizari, and M.B. Rosenbaum. Wenckebach periods of alternate beats. Clinical and experimental observations. Circulation, 48: 41–49, 1973.

    Google Scholar 

  28. J. Hay. Bradycardia and cardiac arrhythmia produced by depression of certain of the functions of the heart. Lancet, 1: 139–143, 1906.

    Article  Google Scholar 

  29. R.M. Heethaar, R.M. de Vos Buchart, J.J.D van der Gon, and F.J. Meijler. A mathematical model of A-V conduction in the rat heart. II. Quantification of concealed conduction. Cardiovasc. Res., 7: 542–556, 1973.

    Article  Google Scholar 

  30. R.M. Heethaar, J.J.D. van der Gon, and F.J. Meijler. Mathematical model of A-V conduction in the rat heart. Cardiovasc. Res., 7: 105–114, 1973.

    Article  Google Scholar 

  31. R.M. Heethaar, J.J.D. van der Gon, and F.L. Meijler. Interpretation of some properties of A-V conduction with the help of analog simulation. Eur. J. Cardiol., 1: 87–93, 1973.

    Google Scholar 

  32. J. Honerkamp. The heart as a system of coupled nonlinear oscillators. J. Math. Biol., 18: 69–88, 1983.

    Article  Google Scholar 

  33. J.P. Keener. Chaotic behavior in piecewise continuous difference equations. Trans. Am. Math. Soc., 261: 589–604, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  34. J.P. Keener. On cardiac arrhythmia: AV conduction block. J. Math Biol., 12: 215–225, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  35. B.D. Kosowsky, P. Latif, and A.M. Radoff. Multilevel atrioventricular block. Circulation, 54: 914–921, 1976.

    Google Scholar 

  36. H.D. Landahl and D. Griffeath. A mathematical model for first degree block and the Wenckebach phenomenon. Bull. Math. Biophys., 33: 27–38, 1971.

    Article  Google Scholar 

  37. M.N. Levy, P.J. Martin, J. Edelstein, and L.B. Goldberg. The A-V nodal Wenckebach phenomenon as a positive feedback mechanism. Prog. Cardiovasc. Dis., 16: 601–613, 1974.

    Article  Google Scholar 

  38. T. Lewis and A.M. Master. Observations upon conduction in the mammalian heart. A-V conduction. Heart, 12: 210–269, 1926.

    Google Scholar 

  39. T. Lewis and G.C. Mathison. Auriculo-ventricular heart block as a result of asphyxia. Heart, 2: 47–53, 1910.

    Google Scholar 

  40. S. Lo Sardo and L. Solinas. Le “flottement du PQ”. II. Étude clinicopathologénique d’une variété singulière de bloc A.V. Arch. Mal. Coeur, 45: 824–829, 1952.

    Google Scholar 

  41. H.J.L. Marriott, A.F. Schubart, and S.M. Bradley. A-V dissociation: A reappraisal. Am. J. Cardiol., 2: 586–605, 1958.

    Article  Google Scholar 

  42. G.R. Mines. On dynamic equilibrium in the heart. J. Physiol. (Lond.), 46: 349–383, 1913.

    Google Scholar 

  43. W. Mobitz. Uber die unvollständige Storüng der Erregungsüberleitung zwischen Vorhof und Kammer des menschlichen Herzens. Z. ges. exp. Med., 41: 180–237, 1924.

    Article  Google Scholar 

  44. R.A. Nadeau, F.A. Roberge, and P. Bhéreur. The mechanism of the Wenckebach phenomenon. Isr. J. Med. Sci., 5: 814–818, 1969.

    Google Scholar 

  45. I. Nagumo and S. Sato. On a response characteristic of a mathematical neuron model. Kybernetik, 10: 155–164, 1972.

    Article  MATH  Google Scholar 

  46. G. Oreto, F. Luzza, and G. Satullo. Progressive prolongation of the second conduction interval throughout successive 3: 2 Wenckebach sequences: The double Wenckebach phenomenon. Am. Heart J., 118: 413–415, 1989.

    Article  Google Scholar 

  47. F.A. Roberge and R.A. Nadeau. The nature of Wenckebach cycles. Can. J. Physiol. Pharmacol., 47: 695–704, 1969.

    Article  Google Scholar 

  48. K.M. Rosen, P. Denes, D. Wu, and R.C. Dhingra. Electrophysiological diagnosis and manifestation of dual A-V nodal pathways. In A.J.J. Wellens, K.I. Lie, and M.J. Janse, editors, The Conduction System of the Heart, pages 453–466. Stenfert Kroese, Leiden, 1976.

    Google Scholar 

  49. K.M. Rosen, A. Mehta, and R.A. Miller. Demonstration of dual atrioventricular nodal pathways in man. Am. J. Cardiol., 33: 291–294, 1974.

    Article  Google Scholar 

  50. O.E. Rössler, R. Rössler, and H.D. Landahl. Arrhythmia in a periodically forced excitable system (abstract). Sixth Int. Biophys. Congress, Kyoto, 1978.

    Google Scholar 

  51. L. Schamroth and M.M. Perlman. Periodic variations in A-V conduction time: The “supernormal” phase of A-V conduction. A study in differential dual A-V pathway conductivity and refractoriness. J. Electrocardiol., 6: 81–84, 1973.

    Article  Google Scholar 

  52. M. Segers. L’alternance du temps de conduction auriculo-ventriculaire. Arch. Mal. Coeur, 44: 525–527, 1951.

    Google Scholar 

  53. M. Segers and H. Denolin. Etude de la transmission auriculo-ventriculaire. III. La phase supernormale de la conduction. Acta Cardiol., 1: 279–282, 1946.

    Google Scholar 

  54. A. Shrier, H. Dubarsky, M. Rosengarten, M.R. Guevara, S. Nattel, and L. Glass. Prediction of complex atrioventricular conduction rhythms in humans with use of the atrioventricular nodal recovery curve. Circulation, 76: 1196–1205, 1987.

    Article  Google Scholar 

  55. M.P. Simson, J.F. Spear, and E.N. Moore. Electrophysiological studies on atrioventricular nodal Wenckebach cycles. Am. J. Cardiol., 41: 244–258, 1978.

    Article  Google Scholar 

  56. R. Slama, J.F. Leclercq, M. Rosengarten, P. Coumel, and Y. Bouvrain. Multilevel block in the atrioventricular node during atrial tachycardia and flutter alternating with Wenckebach phenomenon. Br. Heart J., 42: 463–470, 1979.

    Article  Google Scholar 

  57. R. Slama, C. Sebag, G. Motte, and J.F. Leclercq. Double Wenckebach phenomenon in atrioventricular node and His bundle. Electrophysiological demonstration in a case of atrial flutter. Br. Heart J., 45: 328–330, 1981.

    Article  Google Scholar 

  58. V.V. Smolyaninov. Analysis of the sequence of Wenckebach cycles. Biophysics, 11: 382–390, 1966.

    Google Scholar 

  59. V.V. Smolyaninov. Omission of pulses in an elementary fibre model. Biophysics, 13: 587–599, 1968.

    Google Scholar 

  60. J.F. Spear and E.N. Moore. Effect of potassium on supernormal conduction in the bundle branch-Purkinje system of the dog. Am. J. Cardiol., 40: 923–928, 1977.

    Article  Google Scholar 

  61. S. Teague, S. Collins, D. Wu, P. Denes, K. Rosen, and R. Arzabaecher. A quantitative description of normal AV nodal conduction curve in man. J. Appl. Physiol., 40: 74–78, 1976.

    Google Scholar 

  62. C. Tresser, P. Coullet, and A. Arneodo. On the existence of hysteresis in a transition to chaos after a single bifurcation. J. Phys. (Paris) Lett., 41: L243-L246, 1980.

    Article  Google Scholar 

  63. F.J.L. van Capelle, J.C. du Perron, and D. Durrer. Atrioventricular conduction in isolated rat heart. Am. J. Physiol., 221: 284–290, 1971.

    Google Scholar 

  64. B. van der Pol and J. van der Mark. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Phil. Mag., 6: 763–775, 1928.

    Google Scholar 

  65. I. van der Tweel, J.N. Herbschleb, C. Borst, and F.L. Meijler. Deterministic model of the canine atrio-ventricular node as a periodically perturbed, biological oscillator. J. Appl. Cardiol., 1: 157–173, 1986.

    Google Scholar 

  66. W.A. van Duyl. Latent oscillating features of the smooth muscle of the ureter in relation to peristalsis, In Oscillations in Physiological Systems: Dynamics and Control, pages 159–164. Institute of Measurement and Control, London, 1984.

    Google Scholar 

  67. K.F. Wenckebach. Zur Analyse des unregelmässigen Pulses. Z. Klin. Med., 37: 475–488, 1899.

    Google Scholar 

  68. B.J. West, A.L. Goldberger, G. Rovner, and V. Bhargava. Nonlinear dynamics of the heartbeat. I. The AV junction: Passive conduit or active oscillator? Physica, 17D: 198–206, 1985.

    MathSciNet  MATH  Google Scholar 

  69. D. Wu. Dual atrioventricular nodal pathways: A reappraisal. PACE, 5: 72–89, 1982.

    Article  Google Scholar 

  70. D. Wu, P. Denes, R. Dhingra, and K.M. Rosen. Nature of the gap phenomenon in man. Circ. Res., 34: 682–692, 1974.

    Google Scholar 

  71. D. Wu, P. Denes, R.C. Dhingra, C.R. Wyndham, and K.M. Rosen. Quantification of human atrioventricular nodal concealed conduction utilizing S1S2S3 stimulation. Circ. Res., 39: 659–665, 1976.

    Google Scholar 

  72. D.G. Wyse. Relationship between conductivity and functional refractoriness of atrioventricular node in man. Cardiovasc. Res., 16: 457–466, 1982.

    Article  Google Scholar 

  73. M.L. Young, H. Gelband, and G.S. Wolff. Atrial pacing-induced alternating Wenckebach periodicity and multilevel conduction block in children. Am. J. Cardiol., 57: 135–141, 1986.

    Article  Google Scholar 

  74. M.L. Young, G.S. Wolff, A. Castellanos, and H. Gelband. Application of the Rosenblueth hypothesis to assess atrioventricular nodal behavior. Am. J. Cardiol, 57: 131–134, 1986.

    Article  Google Scholar 

  75. J. Zhao and J. Billette. Modulation of recovery-dependent changes in conduction time by facilitation and fatigue during 4: 3 Wenckebach cycles in rabbit atrioventricular node (abstract). FASEB J., 4: A560, 1990.

    Google Scholar 

  76. M. Zloof, R.M. Rosenberg, and J. Abbott. A computer model for atrio-ventricular blocks. Math. Biosci., 18: 87–117, 1973.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Guevara, M.R. (1991). Iteration of the Human Atrioventricular (AV) Nodal Recovery Curve Predicts Many Rhythms of AV Block. In: Glass, L., Hunter, P., McCulloch, A. (eds) Theory of Heart. Institute for Nonlinear Science. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3118-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3118-9_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7803-0

  • Online ISBN: 978-1-4612-3118-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics