Mathematical Models of Pacemaker Tissue in the Heart

  • J. W. Clark
  • J. M. Shumaker
  • C. R. Murphey
  • W. R. Giles
Part of the Institute for Nonlinear Science book series (INLS)

Abstract

This chapter is concerned with basic issues in modeling electrophysiological responses in pacemaker tissue in the heart. In a structural sense, this type of tissue is complex, consisting of a network of different kinds of interconnected cells. The least complex cell in this network is the primary pacemaker cell; one of the more complex in terms of its ion channel configuration is the working atrial cell from the zone bordering the pacemaker region. Transitional cells of intermediate complexity (e.g., subsidiary pacemaker cells) are interposed between these two types of cardiac cells. This study focuses primarily on the membrane dynamics of pacemaker and atrial cells, the two extreme cases regarding ion channel complexity; in addition we study both amphibian and mammalian cardiac tissue. Importantly, the study also brings in the topic of modification of the electrical behavior of these cells, by the parasympathetic neurotransmitter acetylcholine (ACh). In general, conduction in a network of interconnected cells of different types depends on: (1) the distribution of resistive coupling properties between cells, (2) the distribution of cellular membrane properties in the network, and (3) the distribution of autonomic neural influences that may dramatically change the properties of the component cells of the network.

Keywords

Hydrolysis Assure Norepinephrine Acetylcholine Guanine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    D. Atwell, D. Eisner, and I. Cohen. Voltage clamp and tracer flux data: Effects of a restricted extracellular space. Q. Rev. Biophys., 12: 213–263, 1979.CrossRefGoogle Scholar
  2. [2]
    G.W. Beeler and J.A.S McGuigan. Voltage clamping of multicellular myocardial preparations: Capabilities and limitations of existing methods. Prog. Biophys. Mol. Biol., 34: 219–254, 1978.CrossRefGoogle Scholar
  3. [3]
    W.K. Bleeker, A.J.C. Mackaay, M. Masson-Pévet, L.N. Bouman, and A.E. Becker. Functional and morphological organization of the rabbit SA node. Circ. Res., 46: 11–22, 1980.Google Scholar
  4. [4]
    G.E. Breitwieser and G. Szabo. Mechanism of muscarinic receptor-induced K + channel activation as revealed by hydrolysis-resistant GTP analogues. J. Gen. Physiol., 91: 469–493, 1988.CrossRefGoogle Scholar
  5. [5]
    D.G. Bristow and J.W. Clark. A mathematical model of the primary pacemaking cell in the SA node of the heart. Am. J. Physiol., 243: H207–H218, 1982.Google Scholar
  6. [6]
    D.G. Bristow and J.W. Clark. A mathematical model of the vagally driven primary pacemaker. Am. J. Physiol., 244: H150–H161, 1983.Google Scholar
  7. [7]
    A.M. Brown, K.S. Lee, and T. Powell. Sodium current in single rate heart muscle cells. J. Physiol., 318: 479–500, 1981.Google Scholar
  8. [8]
    G. Brown and J. Eccles. The action of a single vagal volley on the rhythm of the heart beat. J. Physiol., 82: 211–241, 1934.Google Scholar
  9. [9]
    G. Brown and J. Eccles. Further experiments on vagal inhibition of the heart beat. J. Physiol., 82: 242–257, 1934.Google Scholar
  10. [10]
    H.F. Brown. Electrophysiology of the sinoatrial node. Physiol. Rev., 505–530, 1982.Google Scholar
  11. [11]
    H.F. Brown, W. Giles, and S.J. Noble. Membrane currents underlying activity in frog sinus venosus. J. Physiol., 271: 783–816, 1977.Google Scholar
  12. [12]
    H.F. Brown, J. Kimura, D. Noble, and S.J. Noble. The ionic currents underlying pacemaker activity in rabbit sino-atrial node: Experimental results and computer simulations. Proc. Roy. Soc. B., 222: 329–374, 1984.ADSCrossRefGoogle Scholar
  13. [13]
    H.F. Brown, J. Kimura, D. Noble, and S.J. Noble. The slow inward current, i si, in the rabbit sino-atrial node investigated by voltage clamp and computer simulation. Proc. Roy. Soc. B., 222: 305–328, 1984.ADSCrossRefGoogle Scholar
  14. [14]
    D.L. Campbell, W.R. Giles, K. Robinson, and E.F. Shibata. Studies of the sodium-calcium exchanger in bull-frog atrial myocytes. J. Physiol., 403: 317–340, 1988.Google Scholar
  15. [15]
    G. Champigny, P. Bois, and J. Lenfant. Characterization of the ionic mechanism responsible for the hyperpolarization-activated current in frog sinus venosus. Pflügers Arch., 410: 159–164, 1987.CrossRefGoogle Scholar
  16. [16]
    G. Champigny and J. Lenfant. Block and activation of the hyper-polarization-activated inward current by Ba and Cs in frog sinus venosus. Pflügers Arch., 407: 684–690, 1986.CrossRefGoogle Scholar
  17. [17]
    D. DiFrancesco and D. Noble. A model of cardiac electrical activity incorporating ionic pumps and concentration changes. Phil. Trans. Roy. Soc. B., 222: 353–398, 1985.ADSCrossRefGoogle Scholar
  18. [18]
    E. Dong and B. Reitz. Effect of timing of vagal stimulation on heart rate in the dog. Circ. Res., 27: 635–646, 1970.Google Scholar
  19. [19]
    M.H. Draper and S. Weidmann. Cardiac resting and action potentials recorded with intracellular electrodes. J. Physiol., 115: 74–94, 1951.Google Scholar
  20. [20]
    W.R. Giles and E.F. Shibata. Voltage clamp of bull-frog cardiac pacemaker cells: A quantitative analysis of potassium currents. J. Physiol., 368: 265–292, 1985.Google Scholar
  21. [21]
    E.C. Greco and J.W. Clark. A mathematical model of the vagally driven SA nodal pacemaker. IEEE Trans. Biomed. Eng., BME-23: 192–199, 1976.CrossRefGoogle Scholar
  22. [22]
    O.P. Hamill, A. Marty, E. Neher, B. Sakmann, and F.J. Sigworth. Improved patch clamp techniques for high resolution current recording from cell and cell-free membrane patches. Pflügers Arch., 391: 85–100, 1981.CrossRefGoogle Scholar
  23. [23]
    H.C. Hartzell. Distribution of muscarinic acetylcholine receptors and presynaptic nerve terminals in the amphibian heart. J. Cell Biol., 86: 6–20, 1980.CrossRefGoogle Scholar
  24. [24]
    D.W. Hilgemann and D. Noble. Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: Reconstruction of basic cellular mechanisms. Proc. R. Soc. Lond. B., 230: 163–205, 1987.ADSCrossRefGoogle Scholar
  25. [25]
    A.L. Hodgkin and A.F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol., 117: 500–544, 1952.Google Scholar
  26. [26]
    J.R. Hume and W.R. Giles. Active and passive electrical properties of single bullfrog atrial cells. J. Gen. Physiol., 78: 19–42, 1981.CrossRefGoogle Scholar
  27. [27]
    J.R. Hume and W.R. Giles. Ionic currents in single isolated bullfrog atrial cells. J. Gen. Physiol., 81: 153–194, 1983.CrossRefGoogle Scholar
  28. [28]
    O.F. Hutter. Mode of action of autonomic transmitters on the heart. Br. Med. Bull., 13: 176–180, 1957.Google Scholar
  29. [29]
    O.F. Hutter and W. Trautwein. Vagal and sympathetic effects on the pacemaking fibers in the sinus venosus of the heart. J. Gen. Physiol., 39: 715–733, 1956.CrossRefGoogle Scholar
  30. [30]
    Y. Imaizumi and W.R. Giles. Comparison of potassium currents in rabbit atrial and ventricular cells. J. Physiol., 405: 123–145, 1989.Google Scholar
  31. [31]
    H. Irisawa. Comparative physiology of the cardiac pacemaker mechanism. Physiol. Rev., 58: 461–487, 1978.Google Scholar
  32. [32]
    E.A. Johnson and M. Lieberman. Heart: Excitation and contraction. Ann. Rev. Physiol., 33: 417–532, 1971.CrossRefGoogle Scholar
  33. [33]
    M. Kameyama, F. Hofmann, and W. Trautwein. On the mechanism of β-adrenergic regulation of the Ca channel in the guinea-pig heart. Pflügers Arch., 405: 285–293, 1985.CrossRefGoogle Scholar
  34. [34]
    I. Kodama and M.R. Boyett. Regional differences in the electrical activity of the rabbit sinus node. Pflügers Arch., 404: 214–226, 1985.CrossRefGoogle Scholar
  35. [35]
    D. Kreitner. Electrophysiological study of two main pacemaker mechanisms in the rabbit sinus node. Cardiovasc. Res., 19: 304–318, 1985.CrossRefGoogle Scholar
  36. [36]
    L. Lapidus and J. Senfeld. Numerical Solution of Ordinary Differential Equations. Academic Press, New York, 1971.MATHGoogle Scholar
  37. [37]
    K.S. Lee, T.A. Week, R.L. Kao, N.A. Eaikee, and A.M. Brown. Sodium current in single heart muscle cells. Nature, 278: 269–271, 1979.ADSCrossRefGoogle Scholar
  38. [38]
    M.N. Levy, P.J. Martin, T. Iano, and H. Zieske. Paradoxical effect of vagus nerve stimulation on heart rate in dogs. Circ. Res., 25: 303–314, 1969.Google Scholar
  39. [39]
    M. Masson-Pèvet, W.K Bleeker, L.N. Besselsen, B.W. Treytel, H.J. Jongsma, and L.N. Bouman. Pacemaker cell types in the rabbit sinus node: A correlative ultrastructural and electrophysiological study. J. Mol. Cell. Cardiol., 16: 53–63, 1984.CrossRefGoogle Scholar
  40. [40]
    R.E. McAllister, D. Noble, and R.W. Tsien. Reconstruction of the electrical activity of cardiac Purkinje fibers. J. Physiol., 251: 1–59, 1975.Google Scholar
  41. [41]
    D.C. Michaels, E.P. Matyas, and J. Jalife. A mathematical model of the effects of acetylcholine pulses on sinoatrial pacemaker activity. Circ. Res., 55: 89–101, 1984.Google Scholar
  42. [42]
    D.C. Michaels, V.A.J. Slenter, J.J. Salata, and J. Jalife. A model of dynamic vagus-sinoatrial node interactions. Am. J. Physiol, 245: H1043–H1053, 1983.Google Scholar
  43. [43]
    C.R. Murphey and J.W. Clark. Parasympathetic control of the SA node cell in rabbit heart: A model. In S. Sideman and R. Beyar, editors, Activation, Metabolism and Perfusion of the Heart, pages 41–59. Martinus Nijhoff, Boston, 1987.Google Scholar
  44. [44]
    C.R. Murphey, J.W. Clark, W.R. Giles, Y. Imaizumi, and G.V. Naccarelli. A mathematical model of the rabbit atrial myocyte, (in preparation.)Google Scholar
  45. [45]
    R.D. Nathan. Two electrophysiological distinct types of cultured pacemaker cells from rabbit sinoatrial node. Am. J. Physiol., 250: H325–329, 1986.Google Scholar
  46. [46]
    E. Neher and B. Sakmann. Single channel currents recorded from membrane of denervated frog muscle fibers. Nature, 260: 799–802, 1976.ADSCrossRefGoogle Scholar
  47. [47]
    D. Noble. A modification of the Hodgkin-Huxley equations applicable to Purkinje fiber action and pacemaker potentials. J. Physiol., 251: 1–59, 1962.Google Scholar
  48. [48]
    D. Noble and S. Noble. A model of the sinoatrial node electrical activity based on a modification of the DiFrancesco-Noble (1984) equations. Proc. Roy. Soc. B., 222: 295–304, 1984.ADSCrossRefGoogle Scholar
  49. [49]
    W. Osterrieder, A. Noma, and W. Trautwein. On the kinetics of the potassium channel activated by acetylcholine in the SA node of the rabbit heart. Pflügers Arch., 386: 101–109, 1980.CrossRefGoogle Scholar
  50. [50]
    T. Powell, D.A. Terrar, and V.W. Twist. Electrical properties of individual cells isolated from adult rat ventricular myocardium. J. Physiol., 302: 131–153, 1980.Google Scholar
  51. [51]
    T. Powell and V.W. Twist. A rapid technique for the isolation and purification of adult cardiac muscle cells having respiratory control and tolerance to calcium. Biochem. Biophys. Res. Commun., 72: 327–333, 1976.CrossRefGoogle Scholar
  52. [52]
    R. Rasmusson, J.W. Clark, W.R. Giles, E.F. Shibata, and D.L. Campbell. A mathematical model of a bullfrog cardiac pacemaker cell. Am. J. Physiol. 259: H352–H369, 1990.Google Scholar
  53. [53]
    R. Rasmusson, J.W. Clark, W.R. Giles, et al. A mathematical model of electrophysiological activity in a bullfrog atrial cell. Am. J. Physiol. 259: H370–H389, 1990.Google Scholar
  54. [54]
    H. Reuter. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature, 301: 569–574, 1983.ADSCrossRefGoogle Scholar
  55. [55]
    S. Robertson, D. Johnson, and J. Potter. The time course of Ca 2+ exchange with calmodulin, troponin, parvalbumin, and myosin in response to transient increases in Ca 2+. Biophys. J., 34: 559–569, 1981.CrossRefGoogle Scholar
  56. [56]
    L.V. Rosenshtraukh, A.V. Zaitsev, V.G. Fast, A.M. Pertsov, and V.I. Krinsky. Vagally induced block and delayed conduction as a mechanism for circus movement tachychardia in frog atrial. Circ. Res., 64: 213–226, 1989.Google Scholar
  57. [57]
    E.F. Shibata and W.R. Giles. Ionic currents that generate the spontaneous diastolic depolarization in individual cardiac pacemaker cells. Proc. Natl. Acad. Sci., 82: 7796–7800, 1985.ADSCrossRefGoogle Scholar
  58. [58]
    J.M. Shumaker, J.W. Clark, and W.R. Giles. A model of the phase sensitivity of the pacemaker cell in the bullfrog heart. J. Theoretical Biol. (In press.)Google Scholar
  59. [59]
    J.M. Shumaker, J.W. Clark, W.R. Giles, and G. Szabo. A model of the muscarinic receptor-induced changes in K +-current and action potentials in the bullfrog atrial cell. Biophys. J., 57: 567–576, 1990.CrossRefGoogle Scholar
  60. [60]
    M.A. Simmons and H.C. Hartzell. A quantitative analysis of the acetylcholine-activated potassium current in single cells from frog atrium. Pflügers Arch., 409: 454–461, 1987.CrossRefGoogle Scholar
  61. [61]
    J.F. Spear, K.D. Kronhaus, E.N. Moore, and R.P. Kline. The effect of brief vagal stimulation on the isolated rabbit sinus node. Circ. Res, 44: 75–88, 1979.Google Scholar
  62. [62]
    W. Trautwein and M. Kameyama. Intracellular control of calcium and potassium currents in cardiac cells. Jpn. Heart J., 27 Supp.: 31–50, 1986.Google Scholar
  63. [63]
    W. Trautwein and K. Zink. Über Membran-und Aktionspotentiale einzelner Myokardfasern des Kalt-und Warmblüterherzens. Pflügers Arch., 256: 68–84, 1952.CrossRefGoogle Scholar
  64. [64]
    K. Yanagihara, A. Noma, and H. Irisawa. Reconstruction of sinoatrial node pacemaker potential based on the voltage clamp experiments. Jpn. J. Physiol., 30: 841–857, 1980.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • J. W. Clark
    • 1
  • J. M. Shumaker
    • 1
  • C. R. Murphey
    • 1
  • W. R. Giles
    • 2
  1. 1.Department of Electrical and Computer EngineeringRice UniversityHoustonUSA
  2. 2.Departments of Medical Physiology and MedicineUniversity of Calgary Medical SchoolCalgaryCanada

Personalised recommendations