Skip to main content

Alphavirus Infection in Cultured Tissue Cells

  • Chapter
Advances in Disease Vector Research

Part of the book series: Advances in Disease Vector Research ((VECTOR,volume 8))

Abstract

Mosquitoes have been recognized since the early 1900s as vectors of a variety of pathogenic viruses that have plagued humans and domestic animals for centuries. Thorough understanding of the life cycles of these pathogens is essential for developing methods for their control. Epidemiological studies have yielded information on the vector species of many of these disease-causing agents and entomological studies have provided details regarding how arboviruses (arthropod-borne viruses) are cycled in nature through their insect and vertebrate hosts. As a result, eradication measures such as mosquito population control and physical barriers to hematophagous insects have developed, which have proven reasonably effective in certain regions of the world. However, the fact that many vectored phatogens are still responsible for disease outbreaks reaching epidemic proportions and remain a threat to the domestic livestock industry necessitates further research on their control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acheson, N.H., and Tamm, I., 1967, Replication of Semliki Forest virus: An electron microscopic study, Virology 32:128–143.

    PubMed  CAS  Google Scholar 

  2. Adams, R., and Brown, D.T., 1985, BHK cells expressing Sindbis virusinduced homologous interference allow the translation of nonstructural genes of superinfecting virus, J. Virol. 54:351–357.

    PubMed  CAS  Google Scholar 

  3. Birdwell, C.R., and Strauss, J.H., 1974, Distribution of the receptor sites for Sindbis virus on the surface of chicken and BHK cells, J. Virol. 14: 672–678.

    PubMed  CAS  Google Scholar 

  4. Bischoff, J., and Kornfeld, R., 1984, The effect of 1-deoxymannojirimycin on rat liver a-mannosidases, Biochem. Biophys. Res. Commun. 125:324–331.

    PubMed  CAS  Google Scholar 

  5. Boggs, W.M., Hahn, C.S., Strauss, E.G., and Strauss, J.H., 1989, Low pH-dependent Sindbis virus-induced fusion of BHK cells: Differences between strains correlate with amino acid changes in the E1 glycoprotein, Virology 169:485–488.

    PubMed  CAS  Google Scholar 

  6. Brown, D.T., and Condreay, L.D., 1986, Replication of alphaviruses in mosquito cells, in The Togaviridae and Flaviviridae, Schlesinger, S., and Schlesinger, M.J. (eds): Plenum Press, New York, pp. 171–207.

    Google Scholar 

  7. Brown, D.T., and Gliedman, J., 1973, Morphological variants of Sindbis virus obtained from infected mosquito tissue culture cells, J. Virol. 12:1534–1539.

    PubMed  CAS  Google Scholar 

  8. Brown, S.E., and Knudson, D.L., 1987, Characterization and identification of arthropod cell lines, Yunker, C.E. (ed): in Arboviruses in Arthropod Cells in vitro, Vol. I, CRC Press, Inc., Boca Raton, Florida, pp. 53–65.

    Google Scholar 

  9. Burge, B.W., and Pfefferkorn, E.R., 1966, Complementation between temperature-sensitive mutants of Sindbis virus, Virology 30:214–223.

    PubMed  CAS  Google Scholar 

  10. Burge, B.W., and Pfefferkorn, E.R., 1966, Isolation and characterization of conditional-lethal mutants of Sindbis virus, Virology 30:204–213.

    PubMed  CAS  Google Scholar 

  11. Burke, D.J., and Keegstra, K., 1979, Carbohydrate structure of Sindbis virus glycoprotein E2 from virus grown in hamster and chicken cells, J. Virol. 29: 546–554.

    PubMed  CAS  Google Scholar 

  12. Butters, T.D., and Hughes, R.C., 1981, Isolation and characterization of mosquito cell membrane glycoproteins, Biochim. Biophys. Acta. 640:655–671.

    PubMed  CAS  Google Scholar 

  13. Butters, T.D., Hughes, R.C., and Vischer, P., 1981, Steps in the biosynthesis of mosquito cell membrane glycoproteins and the effects of tunicamycin, Biochim. Biophys. Acta. 640:672–686.

    PubMed  CAS  Google Scholar 

  14. Cassell, S., Edwards, J., and Brown, D.T., 1984, Effects of lysosomotropic weak bases on infection of BHK-21 cells by Sindbis virus, J. Virol. 52: 857–864.

    PubMed  CAS  Google Scholar 

  15. Chanas, A.C., Gould, E.A., Clegg, J.C.S., and Varma, M.G.R., 1982, Monoclonal antibodies to Sindbis virus glycoprotein E1 can neutralize, enhance infectivity, and independently inhibit haemagglutination or haemolysis, J. Gen. Virol. 58:37–49.

    PubMed  CAS  Google Scholar 

  16. Clayton, R.B., 1964, The utilization of sterols by insects, J. Lipid Res. 5: 3–19.

    CAS  Google Scholar 

  17. Condreay, L.D., Adams, R.H., Edwards, J., and Brown, D.T., 1988, Effect of Actinonycin D and cycloheximide on replication of Sindbis virus in Aedes albopictus (mosquito) cells, J. Virol. 62:2629–2635.

    PubMed  CAS  Google Scholar 

  18. Condreay, L.D., and Brown, D.T., 1986, Exclusion of superinfecting homologous virus by Sindbis virus-infected Aedes albopictus (mosquito) cells, J. Virol. 58:81–86.

    PubMed  CAS  Google Scholar 

  19. Condreay, L.D., and Brown, D.T., 1988, Suppression of RNA synthesis by a specific antiviral activity in Sindbis virus-infected Aedes albopictus cells, J. Virol. 62:346–348.

    PubMed  CAS  Google Scholar 

  20. Coombs, K., Mann, E., Edwards, J., and Brown, D.T., 1981, Effects of chloroquine and cytochalasin B on the infection of cells by Sindbis virus and vesicular stomatitis virus, J. Virol. 37:1060–1065.

    PubMed  CAS  Google Scholar 

  21. Cunningham, A., Buckley, S.M., Casals, J., and Webb, S.R., 1975, Isolation of Chikungunya virus contaminating an Aedes albopictus cell line, J. Gen. Virol. 27:97–100.

    PubMed  CAS  Google Scholar 

  22. Cutler, D.F., and Garoff, H., 1986, Mutants of the membrane-binding region of Semliki Forest virus E2 protein. I. Cell surface transport and fusogenic activity, J. Cell Biol. 102:889–901.

    PubMed  CAS  Google Scholar 

  23. Cutler, D.F., Melancon, P., and Garoff, H., 1986, Mutants of the membranebinding region of Semliki Forest virus E2 protein. II. Topology and membrane binding, J. Cell Biol. 102:902–910.

    PubMed  CAS  Google Scholar 

  24. Davey, M.W., and Dalgarno, L., 1974, Semliki Forest virus replication in cultured Aedes albopictus cells: Studies on the establishment of persistence, J. Gen. Virol. 24:453–463.

    PubMed  CAS  Google Scholar 

  25. Davey, M.W., Mahon, R.J., and Gibbs, A.J., 1979, Togavirus interference in Culex annulirostris mosquitoes, J. Gen. Virol. 42:641–643.

    PubMed  CAS  Google Scholar 

  26. Davey, M.W., Dennett, D.P., and Dalgarno, L., 1973, The growth of two togaviruses in cultured mosquito and vertebrate cells, J. Gen. Virol. 20: 225–232.

    PubMed  CAS  Google Scholar 

  27. Ding, M., and Schlesinger, M.J., 1989, Evidence that Sindbis virus nsP2 is an autoprotease which processes the virus nonstructural polyprotein, Virology 171:280–284.

    PubMed  CAS  Google Scholar 

  28. Durbin, R.K., and Stollar, V., 1984, A mutant of Sindbis virus with a hostdependent defect in maturation associated with hyperglycosylation of E2, Virology 135:331–344.

    PubMed  CAS  Google Scholar 

  29. Eagle, H., 1959, Amino acid metabolism in mammalian cell cultures, Science 130:432–437.

    PubMed  CAS  Google Scholar 

  30. Eaton, B.T., 1979, Heterologous interference in Aedes albopictus cells infected with alphaviruses, J. Virol. 30:45–55.

    CAS  Google Scholar 

  31. Eaton, B.T., 1981, Viral interference and persistence in Sindbis virus infected Aedes albopictus cells, Can. J. Microbiol. 27:563–567.

    PubMed  CAS  Google Scholar 

  32. Eaton, B.T., and Regnery, R.L., 1975, Polysomal RNA in Semliki Forest virus infected Aedes albopictus cells, J. Gen. Virol. 29:35–49.

    PubMed  CAS  Google Scholar 

  33. Edwards, J., and Brown, D.T., 1986, Sindbis virus-mediated fusion from without is a two-step event, J. Gen. Virol. 67:377–380.

    PubMed  Google Scholar 

  34. Edwards, J., Mann, E., and Brown, D.T., 1983, Conformational changes in Sindbis virus envelope proteins accompanying exposure to low pH, J. Virol. 45:1090–1097.

    PubMed  CAS  Google Scholar 

  35. Erwin, C., and Brown, D.T., 1983, Requirement of cell nucleus for Sindbis virus replication in cultured Aedes albopictus cells, J. Virol. 45:792–799.

    PubMed  CAS  Google Scholar 

  36. Franke, C.A., and Hruby, D.E., 1985, Expression of recombinant vaccinia virus-derived alphavirus proteins in mosquito cells, J. Gen. Virol. 66:2761–2765.

    PubMed  CAS  Google Scholar 

  37. Garoff, H., Kondor-Koch, C., Petterson, R., and Burke, B., 1983, Expression of Semliki Forest virus proteins from cloned complementary DNA. IL The membrane-spanning glycoprotein E2 is transported to the cell surface without its normal cytoplasmic domain, J. Cell Biol. 97:652–658.

    PubMed  CAS  Google Scholar 

  38. Garoff, H., Kondor-Koch, C., and Riedel, H., 1982, Structure and assembly of alpha viruses, Curr. Top. Microbiol. Immunol. 99:1–50.

    PubMed  CAS  Google Scholar 

  39. Garoff, H., Simons, K., and Dobberstein, B., 1978, Assembly of the Semliki Forest virus membrane glycoproteins in the membrane of the endoplasmic reticulum in vitro, J. Mol Biol. 124:587–600.

    PubMed  CAS  Google Scholar 

  40. Gillies, S., and Stollar, V., 1981, Translation of vesicular stomatitis and Sindbis virus mRNAs in cell-free extracts of Aedes albopictus cells, J. Biol. Chem. 256:13188–13192.

    PubMed  CAS  Google Scholar 

  41. Gliedman, J.B., Smith, J.F., and Brown, D.T., 1975, Morphogenesis of Sindbis virus in cultured Aedes albopictus cells, J. Virol. 16:913–926.

    PubMed  CAS  Google Scholar 

  42. Gorziglia, M., Botero, L., Gil, F., and Esparza, J., 1980, Preliminary characterization of virus-like particles in a mosquito (Aedes pseudocutellaris) cell line (Mos. 61), Intervirology 13:232–240.

    PubMed  CAS  Google Scholar 

  43. Grace, T.D.C., 1966, Establishment of a line of mosquito (Aedes aegypti L.) cells grown in vitro, Nature 211:366–367.

    PubMed  CAS  Google Scholar 

  44. Grace, T.D.C., 1982, Development of insect cell culture, Maramorosch, K., and Mitsuhashi, J. (eds): in Invertebrate Cell Culture Applications, Academic Press, Inc., New York, pp. 1–8.

    Google Scholar 

  45. Greene, A.E., and Charney, J., 1971, Characterization and identification of insect cell cultures, Curr. Top. Microbiol. Immunol. 55:51–61.

    PubMed  CAS  Google Scholar 

  46. Greene, A.F., Charney, J., Nichols, W.W., and Coriell, L.L., 1972, Species identity of insect cell lines, In Vitro 7:313–322.

    PubMed  CAS  Google Scholar 

  47. Griffiths, G., Quinn, P., and Warren, G., 1983, Dissection of the Golgi complex. I. Monensin inhibits the transport of viral membrane proteins from medial to trans Golgi cisternae in baby hamster kidney cells infected with Semliki Forest virus, J. Cell Biol. 96:835–850.

    PubMed  CAS  Google Scholar 

  48. Hahn, S., Grakoui, A., Rice, C.M., Strauss, E.G., and Strauss, J.H., 1989, Mapping of RNA- temperature-sensitive mutants of Sindbis virus: Complementation group F mutants have lesions in nsP4, J. Virol. 63:1194–1202.

    PubMed  CAS  Google Scholar 

  49. Hahn, Y.S., Strauss, E.G., and Strauss, J.H., 1989, Mapping of RNA-temperature-sensitive mutants of Sindbis virus: Assignment of complementation groups A, B, and G to nonstructural proteins, J. Virol. 63:3142–3150.

    PubMed  CAS  Google Scholar 

  50. Hardy, W.R., and Strauss, J.H., 1988, Processing the nonstructural polyproteins of Sindbis virus: Study of the kinetics in vivo by using monospecific antibodies, J. Virol. 62:998–1007.

    PubMed  CAS  Google Scholar 

  51. Haywood, A.M., and Boyer, B.P., 1985, Fusion of influenza virus membranes with liposomes at pH 7.5, Proc. Natl. Acad. Sci. USA. 82:4611–4617.

    PubMed  CAS  Google Scholar 

  52. Helenius, A., Kartenbeck, J., Simons, K., and Fries, F., 1980, On the entry of Semliki Forest virus into BHK-21 cells, J. Cell Biol. 84:404–420.

    PubMed  CAS  Google Scholar 

  53. Helenius, A., Marsh, M., and White, J., 1982, Inhibition of Semliki Forest virus penetration by lysosomotropic weak bases, J. Gen. Virol. 58:47–61.

    PubMed  CAS  Google Scholar 

  54. Helenius, A., Morrin, B., Fries, E., Simons, K., Robinson, P., Schirrmacher, V., Terhorst, C., and Strominger, J.L., 1978, Human (HLA-A and HLA-B) and murine (H-2K and H-2D) histocompatibility antigens are cell surface receptors for Semliki Forest virus, Proc. Nat. Acad. Sci. USA. 75:3846–3850.

    PubMed  CAS  Google Scholar 

  55. Hink, W.F., and Bezanson, D.R., 1985, Invertebrate cell culture media and cell lines, Kurstak, E. (ed): in Techniques in the Life Sciences, C1. Techniques in Setting Up and Maintenance of Tissue and Cell Cultures, Vol. C111, Elsevier Scientific Publishers, Ltd., New York, pp. 1–30.

    Google Scholar 

  56. Hirumi, H., 1976, Viral, microbial, and extrinsic cell contamination of insect cell cultures, Maramorosch, K. (ed): in Invertebrate Tissue Culture. Research Applications, Academic Press, Inc., New York, pp. 233–268.

    Google Scholar 

  57. Hirumi, H., Hirumi, K., and Speyer, G., 1976, Further studies on the latent viruses isolated from Singh’s Aedes albopictus cell line, Kurstak, E., and Maramorosch, K. (eds): in Invertebrate Tissue Culture. Applications in Medicine, Biology, and Agriculture, Academic Press, New York, pp. 69–76.

    Google Scholar 

  58. Hirumi, H., Hirumi, K., Speyer, G., Yunker, C.E., Thomas, L.A., Cory, J., and Sweet, B.H., 1976, Viral contamination of a mosquito cell line, Aedes albopictus, associated with syncytium formation, In Vitro 12:83–97.

    PubMed  CAS  Google Scholar 

  59. Holland, J.J., Kennedy, S.I.T., Semler, B.L., Jones, C.L., Roux, L., and Grabau, E.A., 1980, Defective interfering RNA viruses and host-cell response, Frankel-Conrat, H., and Wagner, R.R. (eds): in Comprehensive Virology, Vol. 16, Plenum Press, New York, pp. 137–192.

    Google Scholar 

  60. Hsieh, P., Robbins, P.W., 1984, Regulation of asparagine-linked oligosaccharide processing. Oligosaccharide processing in Aedes albopictus mosquito cells, J. Biol. Chem. 259:2375–2382.

    PubMed  CAS  Google Scholar 

  61. Hubbard, S.C., Ivatt, R.J., 1981, Synthesis and processing of asparaginelinked oligosaccharides, Annu. Rev. Biochem. 50:555–583.

    PubMed  CAS  Google Scholar 

  62. Igarashi, A., 1978, Isolation of a Singh’s Aedes albopictus cell clone sensitive to Dengue and Chikungunya viruses, J. Gen. Virol. 40:531–544.

    PubMed  CAS  Google Scholar 

  63. Igarashi, A., 1979, A mutant of Chikungunya virus isolated from a line of Singh’s Aedes albopictus cells by plaque formation on virus-sensitive cloned cells obtained from another Singh’s Aedes albopictus cell line, Virology 98: 385–392.

    PubMed  CAS  Google Scholar 

  64. Igarashi, A., 1987, Application of Aedes albopictus clone C6/36 cells to the isolation of mosquito-borne togaviruses in Japan, Indonesia, and Thailand, Yunker, C.E. (ed): in Arboviruses in Arthropod Cells in vitro, Vol. I, CRC Press, Inc., Boca Raton, Florida, pp. 103–114.

    Google Scholar 

  65. Igarashi, A., 1988, Adaptation of Aedes albopictus clone C6/36 cells to serum free growth medium, Kuroda, Y., Kurstak, E., and Maramorosch, K. (eds): in Invertebrate and Fish Tissue Culture, Japan Scientific Societies Press, Tokyo, p. 28.

    Google Scholar 

  66. Igarashi, A., Koo, R., and Stollar, V., 1977, Evolution and properties of Aedes albopictus cell cultures persistently infected with Sindbis virus, Virology 82:69–83.

    PubMed  CAS  Google Scholar 

  67. Igarashi, A., and Stollar, V., 1976, Failure of defective interfering particles of Sindbis virus produced in BHK or chicken cells to affect viral replication in Aedes albopictus cells, J. Virol. 19:393–408.

    Google Scholar 

  68. Johnson, D.C., and Schlesinger, M.J., 1980, Vesicular stomatitis virus and Sindbis virus glycoprotein transport to the cell surface is inhibited by ionophores, Virology 103:407–424.

    PubMed  CAS  Google Scholar 

  69. Johnston, R.E., Wan, K., and Bose, H.R., Jr., 1974, Homologous interference induced by Sindbis virus, J. Virol. 14:1076–1082.

    PubMed  CAS  Google Scholar 

  70. Jozan, M., 1987, Of arboviruses, arthropods and arthropod cell cultures: History and expectations, Yunker, C.E. (ed): in Arboviruses in Arthropod Cells in vitro, Vol. I, CRC Press, Inc., Boca Raton, Florida, pp. 3–22.

    Google Scholar 

  71. Kaluza, G., Rott, R., Schwarz, R.T., 1980, Carbohydrate-induced conformational changes of Semliki Forest virus glycoproteins determine antigenicity, Virology 102:286–299.

    PubMed  CAS  Google Scholar 

  72. Kempf, C., Kohler, U., Michel, M.R., and Koblet, H., 1987, Semliki Forest virus-induced polykaryocyte formation is an ATP-dependent event, Arch. Virol. 95:111–122.

    PubMed  CAS  Google Scholar 

  73. Kempf, C., Michel, M.R., Kohler, U., and Koblet, H., 1987, A novel method for the detection of early events in cell-cell fusion of Semliki Forest virus infected cells growing in monolayer cultures, Arch. Virol. 95:283–289.

    PubMed  CAS  Google Scholar 

  74. Kempf, C., Michel, M.R., Kohler, U., and Koblet, H., 1988, Exposure of Semliki Forest virus-infected baby hamster kidney cells to low pH leads to a proton influx and a rapid depletion of intracellular ATP which in turn prevents cell-cell fusion, Arch. Virol. 99:111–115.

    PubMed  CAS  Google Scholar 

  75. Kerénen, S., and Kéériéinen, L., 1979, Functional defects of RNA negative ts mutants of Sindbis and Semliki Forest viruses, J. Virol. 32:19–29.

    Google Scholar 

  76. Kielian, M., and Helenius, A., 1984, Role of cholesterol in fusion of Semliki Forest virus with membranes, J. Virol. 52:281–283.

    PubMed  CAS  Google Scholar 

  77. Kielian, M., and Helenius, A., 1985, pH-induced alterations in the fusogenic spike protein of Semliki Forest virus, J. Cell Biol. 101:2284–2291.

    PubMed  CAS  Google Scholar 

  78. King, C.-C., King, M.W., Garry, R.F., Wan, K.M.-M., Ulug, E.T., and Waite, M.R.F., 1979, Effect of incubation time on the generation of defectiveinterfering particles during undiluted serial passage of Sindbis virus in Aedes albopictus and chick cells. Virology 96:229–238.

    PubMed  CAS  Google Scholar 

  79. Kitamura, S., Imai, T., and Grace, T.D.C., 1973, Adaptation of two mosquito cell lines to medium free of calf serum, J. Med. Entomol. 10: 488–489.

    PubMed  CAS  Google Scholar 

  80. Knipfer, M.E., and Brown, D.T., 1989, Intracellular transport and processing of Sindbis virus glycoproteins, Virology 170:117–122.

    PubMed  CAS  Google Scholar 

  81. Koblet, H., Kempf, C., Kohler, U., and Omar, A., 1985, Conformational changes at pH 6 on the cell surface of Semliki Forest virus-infected Aedes albopictus cells, Virology 143:334–336.

    PubMed  CAS  Google Scholar 

  82. Koblet, H., Omar, A., Kohler, U., and Kempf, C., 1988, Investigation of cell-cell fusion in Semliki Forest virus (SFV) infected C6/36 (mosquito) cells, Kuroda, Y., Kurstak, E., and Maramorosch, K. (eds): in Invertebrate and Fish Tissue Culture, Japan Scientific Societies Press, pp. 140–143.

    Google Scholar 

  83. Kondor-Koch, C., Burke, B., and Garoff, H., 1983, Expression of Semliki Forest virus proteins from cloned complementary DNA. I. The fusion activity of the spike glycoprotein, J. Cell Biol. 97:644–651.

    PubMed  CAS  Google Scholar 

  84. Kondor-Koch, C., Riedel, H., Soderberg, K., and Garoff, H., 1982, Expression of the structural proteins of Semliki Forest virus from cloned cDNA microinjected into the nucleus of baby hamster kidney cells, Proc. Natl. Acad. Sci. USA. 79:4525–4529.

    PubMed  CAS  Google Scholar 

  85. Kornfeld, R., and Kornfeld, S., 1985, Assembly of asparagine-linked oligosaccharides, Annu. Rev. Biochem. 54:631–664.

    PubMed  CAS  Google Scholar 

  86. Kowal, K.J., and Stollar, V., 1981, Temperature-sensitive host-dependent mutants of Sindbis virus, Virology 114:140–148.

    PubMed  CAS  Google Scholar 

  87. Kuhn, R., Hong, Z., and Strauss, J.H., 1990, Mutagenesis of the 3′ nontranslated region of Sindbis virus RNA: Requirement of the 3′ terminal 19 nucleotide conserved region for virus replication, J. Virol 64:1465–1476.

    PubMed  CAS  Google Scholar 

  88. Kuno, G., 1983, Cultivation of mosquito cell lines in serum-free media and their effects on dengue virus replication, In Vitro 19:707–713.

    PubMed  CAS  Google Scholar 

  89. Kurstak, E., Tijssen, P., and Kurstak, C., 1987, In vitro immunoenzymatic detection and screening of arthropod-borne togavirus antigens and antibodies, Yunker, C.E. (ed): in Arboviruses in Arthropod Cells in vitro, Vol. I, CRC Press, Inc., Boca Raton, Florida, pp. 67–75.

    Google Scholar 

  90. Kurtti, T.J., and Munderloh, U.G., 1984, Mosquito cell culture, Adv. Cell Cult. 3:259–302.

    CAS  Google Scholar 

  91. Kurtti, T.J., and Munderloh, U.G., 1989, Advances in the definition of culture media for mosquito cells, Mitsuhashi, J. (ed): in Invertebrate Cell System Applications, Vol. I, CRC Press, Inc., Boca Raton, Florida.

    Google Scholar 

  92. Landureau, J.C., and Lenar-Rousseaux, J.J., 1988, New culture media for insect cells, Kuroda, Y., Kurstak, E., and Maramorosch, K. (eds): in Invertebrate and Fish Tissue Culture, Japan Scientific Societies Press, Tokyo, pp. 23–27.

    Google Scholar 

  93. Larsen, J.R., and Ashley, R.F., 1971, Demonstration of Venezuelan equine encephalitis virus in tissues of Aedes aegypti, Am. J. Trop. Med. Hyg. 20: 754–760.

    PubMed  CAS  Google Scholar 

  94. Leake, C.J., and Varma, M.G.R., 1987, Application of Aedes pseudocutellaris (AP-61) cells to arbovirus isolation and identification, Yunker, C.E. (ed): in Arboviruses in Arthropod Cells in vitro, Vol. I, CRC Press, Inc., Boca Raton, Florida, pp. 79–86.

    Google Scholar 

  95. Leavitt, R., Schlesinger, S., and Kornfeld, S., 1977, Tunicamycin inhibits glycosylation and multiplication of Sindbis and vesicular stomatitis viruses, J. Virol. 21:375–385.

    PubMed  CAS  Google Scholar 

  96. Lehane, M.J., and Leake, C.J., 1982, A kinetic and ultrastructural comparison of alphavirus infection of cultured mosquito and vertebrate cells, J. Trop. Med. Hyg. 85:229–238.

    PubMed  CAS  Google Scholar 

  97. Leibovitz, A., 1963, The growth and maintenance of tissue-cell cultures in free gas exchange with the atmosphere, Am. J. Hyg. 78:173–180.

    PubMed  CAS  Google Scholar 

  98. Levis, R., Huang, H., and Schlesinger, S., 1987, Engineered defective interfering RNAs of Sindbis virus express bacterial chloramphenicol acetyl-transferase in avian cells, Proc. Natl. Acad. Sci. USA. 84:4811–4815.

    PubMed  CAS  Google Scholar 

  99. Levis, R., Weiss, B.G., Tsiang, M., Huang, H., and Schlesinger, S., 1986, Deletion mapping of Sindbis virus DI RNAs derived from cDNAs defines the sequences essential for replication and packaging, Cell 44:137–145.

    PubMed  CAS  Google Scholar 

  100. Li, E., Tabas, I., and Kornfeld, S., 1978, The synthesis of complex-type oligosaccharides. I. Structure of the lipid-linked oligosaccharide precursor of the complex-type oligosaccharides of the vesicular stomatitis virus G protein, J. Biol. Chem. 253:7762–7770.

    PubMed  CAS  Google Scholar 

  101. Li, G., and Rice, C.M., 1989, Mutagenesis of the in-frame opal termination codon preceding nsP4 of Sindbis virus: Studies of translational readthrough and its effect on virus replication, J. Virol. 63:1326–1337.

    PubMed  CAS  Google Scholar 

  102. Lobigs, M., and Garoff, H., 1990, Fusion function of the Semliki Forest virus spike is activated by proteolytic cleavage of the envelope glycoprotein, J. Virol. 64:1233–1240.

    PubMed  CAS  Google Scholar 

  103. Luukkonen, A., Kéériéinen, L., and Renkonen, O., 1976, Phospholipids of Semliki Forest virus grown in cultured mosquito cells, Biochim. Biophys. Acta. 450:109–120.

    PubMed  CAS  Google Scholar 

  104. Luukkonen, A., von Bonsdorff, C.-H., and Renkonen, O., 1977, Characterization of Semliki Forest virus grown in mosquito cells. Comparison with the virus from hamster cells, Virology 78:331–335.

    PubMed  CAS  Google Scholar 

  105. Maassen, J.A., and Terhorst, C., 1981, Identification of a cell-surface protein involved in the binding site of Sindbis virus on human lymphoblastoic cell lines using a hetero bifunctional cross-linker, Eur. J. Biochem. 115:153–158.

    PubMed  CAS  Google Scholar 

  106. Mameli, M.H., Mathis, L.S., Stookey, M., Shia, S.-P., Stowe, D.K., and Draper, R.K., 1984, A Chinese hamster ovary cell mutant with a heatsensitive conditional-lethal defect in vacuolar function, J. Cell Biol. 99: 1907–1916.

    Google Scholar 

  107. McDowell, W., Romero, P.A., and Datema, R., Schwarz, R.T., 1987, Glucose trimming and mannose trimming affect different phases of the maturation of Sindbis virus in infected BHK cells, Virology 161:37–44.

    PubMed  CAS  Google Scholar 

  108. Mi, S., Durbin, R., Huang, H.V., Rice, C.M., and Stollar, V., 1989, Association of the Sindbis virus RNA methyltransferase activity with the nonstructural protein nsP1, Virology 170:385–391.

    PubMed  CAS  Google Scholar 

  109. Mitsuhashi, J., 1982, Determination of essential amino acids for insect cell lines, Mitsuhashi, J., and Maramorosch, K. (eds): in Invertebrate Cell Culture Applications, Academic Press, Inc., New York, pp. 9–51.

    Google Scholar 

  110. Mitsuhashi, J., 1988, Simplification of media and utilization of sugars by insect cells in cultures, Kuroda, Y., Kurstak, E., and Maramorosch, K. (eds): in Invertebrate and Fish Tissue Culture, Japan Scientific Societies Press, Tokyo, pp. 15–18.

    Google Scholar 

  111. Mitsuhashi, J., 1989, Nutritional requirements of insect cells in vitro, Mitsuhashi, J. (ed): in Invertebrate Cell System Applications, Vol. I, CRC Press, Inc., Boca Raton, Florida, pp. 3–20.

    Google Scholar 

  112. Mitsuhashi, J., and Goodwin, R.H., 1989, The serum-free culture of insect cells in vitro, Mitsuhashi, J. (ed): in Invertebrate Cell System Applications, Vol. I, CRC Press, Inc., Boca Raton, Florida, pp. 31–43.

    Google Scholar 

  113. Mitsuhashi, J., and Maramorosch, K., 1964, Leafhopper tissue culture: Embryonic, nymphal and imaginai tissues from aseptic insects, Contrib. Boyce Thompson Inst. 22:435–460.

    Google Scholar 

  114. Mitsuhashi, J., Nakasone, S., and Horie, Y., 1983, Sterol-free eukaryotic cells from continuous cell lines of insects, Cell Biol. Intl. Rep. 7:1057–1062.

    CAS  Google Scholar 

  115. Mooney, J.J., Dalrymple, J.M., Alving, C.R., and Russell, P.K., 1975, Interaction of Sindbis virus with liposomal model membranes, J. Virol. 15: 225–231.

    PubMed  CAS  Google Scholar 

  116. Moore, N.F., Barenholz, Y., and Wagner, R.R., 1976, Microviscosity of togavirus membranes studied by fluorescence depolarization: Influence of envelope proteins and the host cell, J. Virol. 19:126–135.

    PubMed  CAS  Google Scholar 

  117. Nairn, H. Y., and Koblet, H., 1988, Investigation of the role of glycans for the biological activity of Semliki Forest virus grown in Aedes albopictus cells using inhibitors of asparagine-linked oligosaccharides trimming, Arch. Virol. 102: 73–89.

    Google Scholar 

  118. Newton, S.E., and Dalgarno, L., 1983, Antiviral activity released from Aedes albopictus persistently infected with Semliki Forest virus, J. Virol. 47:652–655.

    PubMed  CAS  Google Scholar 

  119. Niesters, H.G.M., and Strauss, J.H., 1990, Mutagenesis of the conserved 51 nucleotide region of Sindbis virus, J. Virol. 64:1639–1647.

    PubMed  CAS  Google Scholar 

  120. Ohkuma, S., and Poole, B., 1978, Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents, Proc. Natl. Acad. Sci. USA. 75:3327–3331.

    PubMed  CAS  Google Scholar 

  121. Oldstone, M.B.A., Tishon, A., Dutko, F.J., Kennedy, S.I.T., Holland, J.J., and Lampert, P.W., 1980, Does the major histocompatibility complex serve as a specific receptor for Semliki Forest virus? J. Virol. 34:256–265.

    PubMed  CAS  Google Scholar 

  122. Omar, A., Flaviano, A., Kohler, U., and Koblet, H., 1986, Fusion of Semliki Forest infected Aedes albopictus cells at low pH is a fusion from within, Arch. Virol. 89:145–159.

    PubMed  CAS  Google Scholar 

  123. Omar, A., Flaviano, A., Reigel, F., Kohler, U., and Koblet, H., 1989, Syncytium formation and inhibition in Semliki-Forest-virus-infected Aedes albopictus cells at low pH, Mitsuhashi, J. (ed): in Invertebrate Cell System Applications, Vol. II, CRC Press, Inc., Boca Raton, Florida, pp. 147–150.

    Google Scholar 

  124. Omar, A., Kempf, C., Kohler, U., and Koblet, H., 1985, Involvement of thiol groups in the fusion process of Aedes albopictus cells infected with Semliki Forest virus (SFV), Experientia 41:536 (Abstr.).

    Google Scholar 

  125. Omar, A., and Koblet, H., 1988, Semliki Forest virus particles containing only the E1 envelope glycoprotein are infectious and can induce cell-cell fusion, Virology 166:17–23.

    PubMed  CAS  Google Scholar 

  126. Omar, A., and Koblet, H., 1989, Application of mosquito cell culture and toga virus for studying the mechanism of membrane fusion, Mitsuhashi, J. (ed): in Invertebrate Cell System Applications, Vol. II, CRC Press, Inc., Boca Raton, Florida, pp. 151–155.

    Google Scholar 

  127. Ou, J.-H., Strauss, E.G., and Strauss, J.H., 1983, The 5′ terminal sequences of the genomic RNAs of several alphaviruses, J. Mol. Biol. 168:1–15.

    PubMed  CAS  Google Scholar 

  128. Ou, J.-H., Trent, D.W., and Strauss, J.H., 1982, The 3′-non-coding regions of alphavirus RNAs contain repeating sequences, J. Mol. Biol. 156:719–730.

    PubMed  CAS  Google Scholar 

  129. Peleg, J., 1968, Growth of arboviruses in monolayers from subcultured mosquito embryo cells, Virology 35:617–619.

    PubMed  CAS  Google Scholar 

  130. Peleg, J., 1969, Inapparent persistent virus infection in continuously grown Aedes aegypti mosquito cells, J. Gen. Virol. 5:463–471.

    Google Scholar 

  131. Peleg, J., 1971, Growth of arboviruses in arthropod cell cultures: Applications. I. Attenuation of Semliki Forest (SF) virus in continuously cultured Aedes aegypti mosquito cells (Peleg) as a step in production of vaccines, Curr. Top. Microbiol. Immunol. 55:155–161.

    PubMed  CAS  Google Scholar 

  132. Peleg, J., and Pecht, M., 1978, Adaptation of an Aedes aegypti mosquito cell line to growth at 15°C and its response to infection by Sindbis virus, J. Gen. Virol. 38:231–239.

    PubMed  CAS  Google Scholar 

  133. Peleg, J., Stollar, V., 1974, Homologous interference in Aedes aegypti cell cultures infected with Sindbis virus, Arch. Ges. Virusforsch. 45:309–318.

    PubMed  CAS  Google Scholar 

  134. Peters, C.J., and Dalrymple, J.M., 1990, Alphaviruses, Fields, B.N., and Knipe, D.M. (eds): in Virology, Vol. I, Raven Press, Ltd., New York, pp. 713–761.

    Google Scholar 

  135. Presley, J.F., and Brown, D.T., 1989, The proteolytic cleavage of PE2 to envelope glycoprotein E2 is not strictly required for the maturation of Sindbis virus, J. Virol. 63:1975–1980.

    CAS  Google Scholar 

  136. Pressman, B.C., and Fahim, M., 1982, Pharmacology and toxicology of the monovalent carboxylic ionophores, Ann. Rev. Pharm. Toxicol. 22: 851–856.

    Google Scholar 

  137. Pudney, M., Leake, C.J., and Buckley, S.M., 1982, Replication of arboviruses in arthropod in vitro systems: An overview, Maramorosch, K., and Mitsuhashi, J. (eds): in Invertebrate Cell Culture Applications, Academic Press, Inc., New York, pp. 159–194.

    Google Scholar 

  138. Raghow, R.S., Davey, M.W., and Dalgarno, L., 1973, The growth of Semliki Forest virus in cultured mosquito cells: Ultrastructural observations, Arch. Ges. Virusforsch. 43:165–168.

    PubMed  CAS  Google Scholar 

  139. Raghow, R.S., Grace, T.D.C., Filshie, B.K., Bartley, W., and Dalgarno, L., 1973, Ross River virus replication in cultured mosquito and mammalian cells: Virus growth and correlated ultrastructural changes, J. Gen. Virol. 21: 109–122.

    PubMed  CAS  Google Scholar 

  140. Rehacek, J., 1968, The growth of arboviruses in mosquito cells in vitro, Acta Virol. 12:241–246.

    PubMed  CAS  Google Scholar 

  141. Rice, C.M., Franke, C.A., Strauss, J.H., and Hruby, D.F., 1985, Expression of Sindbis virus structural proteins via recombinant vaccinia virus: Synthesis, processing, and incorporation into mature Sindbis virions, J. Virol. 56: 227–239.

    PubMed  CAS  Google Scholar 

  142. Riedel, B., and Brown, D.T., 1977, Role of extracellular virus in the maintenance of the persistent infection induced in Aedes albopictus (mosquito) cells by Sindbis virus, J. Virol. 23:554–561.

    PubMed  CAS  Google Scholar 

  143. Riedel, B., and Brown, D.T., 1979, Novel antiviral activity found in the media of Sindbis virus-persistently infected mosquito (Aedes albopictus) cell cultures, J. Virol. 29:51–60.

    PubMed  CAS  Google Scholar 

  144. Riedel, H., 1985, Different membrane anchors allow the Semliki Forest virus spike subunit E2 to reach the cell surface, J. Virol. 54:224–228.

    PubMed  CAS  Google Scholar 

  145. Robbins, A.R., Peng, S.S., and Marshall, J.L., 1983, Mutant Chinese hamster ovary cells pleiotropically defective in receptor-mediated endocytosis, J. Cell Biol. 96:1064–1071.

    PubMed  CAS  Google Scholar 

  146. Russell, D.L., Dalrymple, J.M., and Johnston, R.E., 1989, Sindbis virus mutations which coordinately affect glycoprotein processing, penetration, and virulence in mice, J. Virol. 63:1619–1629.

    PubMed  CAS  Google Scholar 

  147. Sarver, N., and Stollar, V., 1977, Sindbis virus-induced cytopathic effect in clones of Aedes albopictus (Singh) cells, Virology 80:390–400.

    PubMed  CAS  Google Scholar 

  148. Saunier, B., Kilker, R.D., Tkacz, J.S., Quaroni, A., and Herscovics, A., 1982, Inhibition of N-linked complex oligosaccharide formation by 1-deoxy-nojirimycin, an inhibitor of processing glucosidases, J. Biol. Chem. 257: 14155–14161.

    PubMed  CAS  Google Scholar 

  149. Sawicki, D., and Sawicki, S., 1987, Alphavirus plus strand and minus strand RNA synthesis, Brinton, M.A., and Rueckert, R.R. (eds): in Positive Strand RNA Viruses, Alan R. Liss, Inc., New York, pp. 251–260.

    Google Scholar 

  150. Sawicki, D.L., Barkhimer, D.B., Sawicki, S.G., Rice, C.M., and Schlesinger, S., 1990, Temperature sensitive shut off of alphavirus minus strand RNA synthesis maps to a nonstructural protein, nsP4, Virology 174:43–52.

    PubMed  CAS  Google Scholar 

  151. Sawicki, D.L., and Sawicki, S.G., 1985, Functional analysis of the A complementation group mutants of Sindbis HR virus, Virology 144:20–34.

    PubMed  CAS  Google Scholar 

  152. Sawicki, D.L., Sawicki, S.G., Kerénen, S., and Kéériéinen, L., 1981, Specific Sindbis virus coded function for minus-strand RNA synthesis, J. Virol. 39: 348–358.

    PubMed  CAS  Google Scholar 

  153. Sawicki, S.G., and Sawicki, D.L., 1986, The effect of loss of regulation of minus-strand RNA synthesis on Sindbis virus replication, Virology 151: 339–349.

    PubMed  CAS  Google Scholar 

  154. Sawicki, S.G., Sawicki, D.L., Kéériéinen, L., and Kerénen, S., 1981, A Sindbis virus mutant temperature-sensitive in the regulation of minus-strand synthesis, Virology 115:161–172.

    PubMed  CAS  Google Scholar 

  155. Scheefers, H., Scheefers-Borchel, U., Edwards, J., and Brown, D.T., 1980, Distribution of virus structural proteins and protein-protein interactions in plasma membrane of baby hamster kidney cells infected with Sindbis or vesicular stomatitis virus, Proc. Nat. Acad. Sci. USA. 77:7277–7281.

    PubMed  CAS  Google Scholar 

  156. Scheefers-Borchel, U., Scheefers, H., Edwards, J., and Brown, D.T., 1981, Sindbis virus maturation in cultured mosquito cells is sensitive to Actinomycin D, Virology 110:292–301.

    PubMed  CAS  Google Scholar 

  157. Schlesinger, S., Koyama, A.H., Malfer, C., Gee, S.L., and Schlesinger, M.J., 1985, The effects of inhibitors of glucosidase I on the formation of Sindbis virus, Virus Res. 2:139–149.

    PubMed  CAS  Google Scholar 

  158. Schlesinger, S., Levis, R., Weiss, B.G., Tsiang, M., and Huang, H., 1987, Replication and packaging sequences in defective interfering RNAs of Sindbis virus, Brinton, M.A., and Rueckert, R.R. (eds): in Positive Strand RNA Viruses, Alan R. Liss, Inc., New York, pp. 241–250.

    Google Scholar 

  159. Schlesinger, S., Schlesinger, M.J., 1990, Replication of Togaviridae and Flaviviridae, Knipe, D.M., and Fields, B.N. (eds): in Virology, Vol. I, Raven Press, Ltd., New York, pp. 697–711.

    Google Scholar 

  160. Schlesinger, S., and Weiss, B.G., 1986, Defective RNAs of alphaviruses, Schlesinger, S., and Schlesinger, M.J. (eds): in The Togaviridae and Flavi-viridae, Plenum Press, New York, pp. 149–170.

    Google Scholar 

  161. Schmid, S., Fuchs, R., Kielian, M., Helenius, A., and Mellman, I., 1989, Acidification of endosome subpopulations in wild-type Chinese hamster ovary cells and temperature-sensitive acidification-defective mutants, J. Cell Biol. 108:1291–1300.

    PubMed  CAS  Google Scholar 

  162. Schneider, I., 1987, Preparation and maintenance of arthropod cell cultures: Diptera, with emphasis on mosquitoes, Yunker, C.E. (ed): in Arboviruses in Arthropod Cells in vitro, Vol. I, CRC Press, Inc., Boca Raton, Florida, pp. 25–34.

    Google Scholar 

  163. Schwarz, R.T., and Datema, R., 1984, Inhibitors of trimming: New tools in glycoprotein research, Trends Biochem. Sci. 9:32–34.

    CAS  Google Scholar 

  164. Sefton, B.M., 1977, Immediate glycosylation of Sindbis virus membrane proteins, Cell 10:659–668.

    PubMed  CAS  Google Scholar 

  165. Sefton, B.M., and Burge, B.W., 1973, Biosynthesis of Sindbis virus carbohydrates, J. Virol. 12:1366–1374.

    PubMed  CAS  Google Scholar 

  166. Sefton, B.M., and Keegstra, K., 1974, Glycoproteins of Sindbis virus: Preliminary characterization of the oligosaccharides, J. Virol. 14:522–530.

    PubMed  CAS  Google Scholar 

  167. Shenk, T.E., Koshelnyk, K.A., and Stollar, V., 1974, Temperature-sensitive virus from Aedes albopictus cells chronically infected with Sindbis virus, J. Virol. 13:439–447.

    PubMed  CAS  Google Scholar 

  168. Silberkang, M., Havel, C.M., Friend, D.S., McCarthy, B.J., and Watson, J.A., 1983, Isoprene synthesis in isolated embryonic Drosophila cells. I. Sterol-deficient eukaryotic cells, J. Biol. Chem. 258:8503–8511.

    PubMed  CAS  Google Scholar 

  169. Simizu, B., and Maeda, S., 1981, Growth patterns of temperature-sensitive mutants of Western Equine Encephalitis virus in cultured Aedes albopictus (mosquito) cells, J. Gen. Virol. 56:349–361.

    PubMed  CAS  Google Scholar 

  170. Singh, K.R.P., 1967, Cell cultures derived from larvae of Aedes albopictus (Skuse) and Aedes aegypti (L.). Curr. Sci. 36:506–508.

    Google Scholar 

  171. Smith, A.L., and Tignor, G.H., 1980, Host cell receptors for two strains of Sindbis virus, Arch. Virol. 66:11–26.

    PubMed  CAS  Google Scholar 

  172. Smith, J.F., and Brown, D.T., 1977, Envelopment of Sindbis virus: Synthesis and organization of proteins in cells infected with wild type and maturation defective mutants, J. Virol. 22:662–678.

    PubMed  CAS  Google Scholar 

  173. Stalder, J., Reigel, F., and Koblet, H., 1983, Defective viral RNAs in Aedes albopictus C6/36 cells persistently infected with Semliki Forest virus, Virology 129:247–254.

    PubMed  CAS  Google Scholar 

  174. Steacie, A.D., and Eaton, B.T., 1984, Properties of defective interfering particles of Sindbis virus generated in vertebrate and mosquito cells, J. Gen. Virol. 65:333–341.

    PubMed  CAS  Google Scholar 

  175. Stevens, T.M., 1970, Arbovirus replication in mosquito cell lines (Singh) grown in monolayer or suspension culture, Proc. Soc. Exp. Biol. Med. 134: 356–361.

    PubMed  CAS  Google Scholar 

  176. Stollar, V., 1978, Inhibition of Sindbis virus replication in Aedes albopictus cells deprived of methionine, Virology 91:504–507.

    PubMed  CAS  Google Scholar 

  177. Stollar, V., 1980, Togaviruses in cultured arthropod cells, Schlesinger, R.W. (ed): in The Togaviruses, Academic Press, New York, pp. 584–622.

    Google Scholar 

  178. Stollar, V., and Hardy, J.L., 1984, Host dependent mutants of Sindbis virus whose growth is restricted in cultured Aedes albopictus cells produce normal yields of virus in intact mosquitoes, Virology 134:177–183.

    PubMed  CAS  Google Scholar 

  179. Stollar, V., Harrap, K., Thomas, V., and Sarver, N., 1979, Observations related to cytopathic effect in Aedes albopictus cells infected with Sindbis virus, Kurstak, E. (ed): in Arctic and Tropical Arboviruses, Academic Press, Inc., New York, pp. 277–296.

    Google Scholar 

  180. Stollar, V., Stollar, B.D., Koo, R., Harrap, K.A., and Schlesinger, R.W., 1976, Sialic acid contents of Sindbis virus from vertebrate and mosquito cells, Virology 69:104–115.

    PubMed  CAS  Google Scholar 

  181. Stollar, V., and Thomas, V.L., 1975, An agent in the Aedes aegypti cell line (Peleg) which causes fusion of Aedes albopictus cells. Virology 64:367–377.

    PubMed  CAS  Google Scholar 

  182. Strauss, E.G., Lenches, E.M., and Strauss, J.H., 1976, Mutants of Sindbis virus. I. Isolation and partial characterization of 89 new temperature-sensitive mutants, Virology 74:154–168.

    PubMed  CAS  Google Scholar 

  183. Strauss, E.G., Levinson, R., Rice, C.M., Dalrymple, J., and Strauss, J.H., 1988, Nonstructural proteins nsP3 and nsP4 of Ross River and O’Nyongnyong viruses: Sequence and comparison with those of other alphaviruses, Virology 164:265–274.

    PubMed  CAS  Google Scholar 

  184. Strauss, E.G., and Rice, C.M., and Strauss, J.H., 1983, Sequence coding for the alphavirus nonstructural proteins is interrupted by an opal termination codon, Proc. Natl. Acad. Sci. USA. 80:5271–5275.

    PubMed  CAS  Google Scholar 

  185. Strauss, E.G., Rice, C.M., and Strauss, J.H., 1984, Complete nucleotide sequence of the genomic RNA of Sindbis virus, Virology 133:92–110.

    PubMed  CAS  Google Scholar 

  186. Strauss, E.G., and Strauss, J.H., 1980, Mutants of alphaviruses: Genetics and physiology, Schlesinger, R.W. (ed): in The Togaviruses, Academic Press, Inc., New York, pp. 393–426.

    Google Scholar 

  187. Strauss, E.G., and Strauss, J.H., 1986, Structure and replication of the alphavirus genome, Schlesinger, S., and Schlesinger, M.J. (eds): in The Togaviridae and Flaviviridae, Plenum Press, New York, pp. 35–90.

    Google Scholar 

  188. Sweet, B.H., and McHale, J.S., 1970, Characterization of cell lines derived from Culiseta inornata and Aedes vexans mosquitoes, Exp. Cell Res. 61: 51–63.

    PubMed  CAS  Google Scholar 

  189. Takatsuki, A., Kohno, K., and Tamura, G., 1975, Inhibition of biosynthesis of polyisoprenol sugars in chick embryo microsomes by tunicamycin, Agric. Biol. Chem. 39:2089–2091.

    CAS  Google Scholar 

  190. Takkinen, K., 1986, Complete nucleotide sequence of the nonstructural protein genes of Semliki Forest virus, Nucleic Acids Res. 14:5667–5682.

    PubMed  CAS  Google Scholar 

  191. Talbot, P.J., and Vance, D.E., 1980, Evidence that Sindbis virus infects BHK-21 cells via a lysosomal route, Can. J. Biochem. 58:1131–1137.

    PubMed  CAS  Google Scholar 

  192. Talbot, P.J., and Vance, D.E., 1982, Biochemical studies on the entry of Sindbis virus into BHK-21 cells and the effect of NH4Cl, Virology 118: 451–455.

    PubMed  CAS  Google Scholar 

  193. Tarentino, A.L., and Maley, F., 1974, Purification and properties of an endo-(β)-acetylglucosaminidase from Streptomyces griseus, J. Biol. Chem. 249: 811–817.

    PubMed  CAS  Google Scholar 

  194. Tatem, J., and Stollar, V., 1986, Dominance of the CPE ( + ) phenotype in hybrid Aedes albopictus cells infected with Sindbis virus, Virus Res. 5:121–130.

    PubMed  CAS  Google Scholar 

  195. Timchak, L.M., Kruse, F., Mamell, M.H., and Draper, R.K., 1986, A thermosensitive lesion in a Chinese hamster cell mutant causing differential effects of the acidification of endosomes and lysosomes, J. Biol. Chem. 261: 14154–14159.

    PubMed  CAS  Google Scholar 

  196. Tkacz, J.S., and Lampen, J.O., 1975, Tunicamycin inhibition of polyisoprenol N-acetylglucosaminyl pyrophosphate formation in calf liver microsomes, Biochem. Biophys. Res. Commun. 65:248–257.

    PubMed  CAS  Google Scholar 

  197. Tooker, P., and Kennedy, S.I.T., 1981, Semliki Forest virus multiplication in clones of Aedes albopictus cells, J. Virol. 37:589–600.

    PubMed  CAS  Google Scholar 

  198. Tsiang, M., Weiss, B.G., and Schlesinger, S., 1988, Effects of 5′-terminal modifications on the biological activity of defective interfering RNAs of Sindbis virus, J. Virol. 62:47–53.

    PubMed  CAS  Google Scholar 

  199. Vaughn, J.L., 1985, Insect tissue culture: Techniques and development, Kurstak, E. (ed): in Techniques in the Life Sciences. C1. Techniques in Setting Up and Maintenance of Tissue and Cell Cultures, Vol. C108, Elsevier Scientific Publishers, Ltd., New York, pp. 1–35.

    Google Scholar 

  200. Vaughn, J.L., Louloudes, S.J., and Dougherty, K., 1971, The uptake of free and serum-bound sterols by insect cells in vitro, Curr. Top. Microbiol. Immunol. 55:92–97.

    PubMed  CAS  Google Scholar 

  201. Weaver, S.C., 1986, Electron microscopic analysis of infection patterns for Venezuelan equine encephalomyelitis virus in the vector mosquito, Culex (Melanoconian) taeniopus, Am. J. Trop. Med. Hyg. 35:624–631.

    PubMed  CAS  Google Scholar 

  202. Weaver, S.C., Scott, T.W., Lorenz, L.H., Lerdthusnee, K., and Romoser, W.S., 1988, Togavirus-associated pathologic changes in the midgut of a natural mosquito vector, J. Virol. 62:2083–2090.

    PubMed  CAS  Google Scholar 

  203. Weiss, B., Nitschko, H., Ghattas, I., Wright, R., and Schlesinger, S., 1989, Evidence for specificity in the encapsidation of Sindbis virus RNAs, J. Virol. 63:5310–5318.

    PubMed  CAS  Google Scholar 

  204. Wengler, G., 1980, Effects of alphavirus on host cell macromolecular synthesis, Schlesinger, R.W. (ed): in The Togaviruses, Academic Press, Inc., New York, pp. 459–471.

    Google Scholar 

  205. White, J., and Helenius, A., 1980, pH-dependent fusion between the Semliki Forest virus membrane and liposomes, Proc. Natl. Acad. Sci. USA. 77:3273–3277.

    PubMed  CAS  Google Scholar 

  206. White, J., Kartenbeck, J., and Helenius, A., 1980, Fusion of Semliki Forest virus with the plasma membrane can be induced by low pH, J. Cell Biol. 87: 264–272.

    PubMed  CAS  Google Scholar 

  207. White, J., Kielian, M., and Helenius, A., 1983, Membrane fusion proteins of enveloped animal viruses, Q. Rev. Biophys. 16:151–195.

    PubMed  CAS  Google Scholar 

  208. Whitfield, S.G., Murphy, A., and Sudia, W.D., 1971, Eastern equine encephalomyelitis virus: An electron microscopic study of Aedes triseriatus (Say) salivary gland infection, Virology 43:110–122.

    PubMed  CAS  Google Scholar 

  209. Wilkie, G.E.I., Stockdale, H., and Pirt, S.V., 1980, Chemically defined media for production of insect cells and viruses in vitro, Dev. Biol. Stand. 46: 29–37.

    PubMed  CAS  Google Scholar 

  210. Wyatt, G.R., Loughheed, T.C., and Wyatt, S.S., 1956, The chemistry of insect hemolymph. Organic components of the hemolymph of the silkworm, Bombyx mori, and two other species, J. Gen. Physiol. 39:853–868.

    PubMed  CAS  Google Scholar 

  211. Wyatt, S.S., 1956, Culture in vitro of tissue from the silkworm, Bombyx mori L., J. Gen. Physiol. 39:841–852.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Miller, M.L., Brown, D.T. (1991). Alphavirus Infection in Cultured Tissue Cells. In: Harris, K.F. (eds) Advances in Disease Vector Research. Advances in Disease Vector Research, vol 8. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3110-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3110-3_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7800-9

  • Online ISBN: 978-1-4612-3110-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics