Detection of Malarial Parasites in Mosquitoes

  • Robert A. Wirtz
  • Thomas R. Burkot
Part of the Advances in Disease Vector Research book series (VECTOR, volume 8)


Malaria is the most important parasitic disease in the tropics, with indigenous transmission in over 100 countries or areas of the world (122, 123). The World Health Organization (WHO) estimates the global incidence of this mosquito-transmitted disease to be approximately 100 million cases annually (67); other estimates are in the 200 to 400 million range (57, 101). In 1984, nearly 400 million people, one-twelfth of the world’s population, were living in areas where malaria is highly endemic and where no specific antimalarial measures were being applied. An additional 2700 million people, 56% of the world’s population, live in areas where malaria is still endemic but where control measures have reduced its level of endemicity. In many of these areas malaria is increasing dramatically (67, 122, 123).


Salivary Gland Malaria Transmission Malaria Vector Human Malaria Vectorial Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, E.Z., Beier, J.C., Meek, S.R., and Wirtz, R.A., 1987, Detection and quantitation of Plasmodium falciparum and Plasmodium vivax infections in Thai-Kampuchean Anopheles (Diptera: Culicidae) by enzyme-linked immunosorbent assay, J. Med. Entomol. 24:536–541.PubMedGoogle Scholar
  2. 2.
    Beier, J.C., Asiago, C.M., Onyango, F.K., and Koros, J.K., 1988, ELISA absorbance cut-off method affects malaria sporozoite rate determination in wild Afrotropical Anopheles, Med. Vet. Entomol. 2:259–264.PubMedGoogle Scholar
  3. 3.
    Beier, J.C., Onyango, F.K., Koros, J.K., Ramadhan, M., Ogwang, R., Koech, D.K., and Roberts, C.R., 1991, Quantitation of malaria sporozoites transmitted in vitro during salivation by wild Afrotropical Anopheles, Med. Vet. Entomol. 5:(in press).Google Scholar
  4. 4.
    Beier, J.C., Onyango, F.K., Ramadhan, M., Koros, J.K., Asiago, C.M., Koech, D.K., and Roberts, C.R., 1991, Quantitation of malaria sporozoites in the salivary glands of wild Afrotropical Anopheles, Med. Vet. Entomol. 5:(in press).Google Scholar
  5. 5.
    Beier, J.C., Perkins, P.V., Wirtz, R.A., Whitmire, R.E., Mugambi, M., and Hockmeyer, W.T., 1987, Field evaluation of an enzyme-linked immunosorbent assay (ELISA) for Plasmodium falciparum sporozoite detection in anopheline mosquitoes from Kenya, Am. J. Trop. Med. Hyg. 36:459–468.PubMedGoogle Scholar
  6. 6.
    Beier, M.S., Schwartz, I.K., Beier, J.C., Perkins, P.V., Onyango, F., Koros, J.K., Campbell, G.H., Andrysiak, P.M., and Brandling-Bennett, A.D., 1988, Identification of malaria species by ELISA in sporozoite and oocyst infected Anopheles from western Kenya, Am. J. Trop. Med. Hyg. 39:323–327.PubMedGoogle Scholar
  7. 7.
    Boudin, C., Robert, V., Verhave, J.P., Carnevale, P. and Meuweissen, J.H.E.T., 1988, La technique ELISA (enzyme-linked immuno-sorbent assay) dans la depistage des moustiques infectes par Plasmodium falciparum. I. Evaluation de la fiabilité et de l’efficacité du test. II. Application sur le terrain, Bull. W.H.O. 66:87–97.PubMedGoogle Scholar
  8. 8.
    Boyd, M.F., 1949, Historical review. Boyd, M.F. (ed): in Malariology, vol. 1, W.B. Saunders Company, Philadelphia, pp. 3–25.Google Scholar
  9. 9.
    Bruce-Chwatt, L.J., 1985, Essential Malariology, William Heinemann Medical Books Ltd, London, 452 p.Google Scholar
  10. 10.
    Bruce-Chwatt, L.J., 1987, From Laveran’s discovery to DNA probes: New trends in diagnosis of malaria. Lancet 2:1509–1511.PubMedGoogle Scholar
  11. 11.
    Bruce-Chwatt, L.J., 1988, History of malaria from prehistory to eradication. Wernsdorfer, W.H., and McGregor, I. (eds): in Malaria. Principles and Practice of Malariology, vol. 1, Churchill Livingstone, Edinburgh, pp. 1–59.Google Scholar
  12. 12.
    Burkot, T.R., 1988, Non-random host selection by anopheline mosquitoes, Parasitol. Today 4:156–162.PubMedGoogle Scholar
  13. 13.
    Burkot, T.R., Dye, C., and Graves, P.M., 1989, An analysis of some factors affecting the sporozoite rates, human blood indexes and biting rates of the members of the Anopheles punctulatus complex in Papua New Guinea, Am. J. Trop. Med. Hyg. 40:229–234.PubMedGoogle Scholar
  14. 14.
    Burkot, T.R., Graves, P.M., Cattani, J.A., Wirtz, R.A., and Gibson, F.D., 1987, The efficiency of sporozoite transmission in the human malaria, Plasmodium falciparum and P. vivax, Bull. W.H.O. 65:375–380.PubMedGoogle Scholar
  15. 15.
    Burkot, T.R., Graves, P.M., Paru, R., Wirtz, R.A., and Heywood, P., 1988, Human malaria transmission studies in the Anopheles punctulatus complex in Papua New Guinea: Sporozoite rates, inoculation rates and sporozoite densities, Am. J. Trop. Med. Hyg. 39:135–144.PubMedGoogle Scholar
  16. 16.
    Burkot, T.R., Graves, P.M., Wirtz, R.A., Brabin, B.J., Battistutta, D., Cattani, J.A., Maizels, R.M., and Alpers, M.P., 1989, Differential antibody responses to Plasmodium falciparum and Plasmodium vivax circumsporozoite proteins in a human population, J. Clin. Microbiol. 27:1346–1351.PubMedGoogle Scholar
  17. 17.
    Burkot, T.R., Molineaux, L., Graves, P.M., Paru, R., Battistutta, D., Dagoro, H., Barnes, A., Wirtz, R.A., and Garner, P., 1990, The prevalence of naturally acquired multiple infections of Wuchereria bancrofti and human malarias in anophelines. Parasitology 100:369–375.PubMedGoogle Scholar
  18. 18.
    Burkot, T.R., Williams, J.L., and Schneider, L., 1984, Identification of Plasmodium falciparum-infected mosquitoes by a double antibody enzyme-linked immunosorbent assay, Am. J. Trop. Med. Hyg. 33:783–788.PubMedGoogle Scholar
  19. 19.
    Burkot, T.R., and Wirtz, R.A., 1986, Immunoassays of malaria sporozoites in mosquitoes, Parasitol. Today 2:155–157.PubMedGoogle Scholar
  20. 20.
    Burkot, T.R., Wirtz, R.A., and Lyon, J., 1985, Use of fluorodinitrobenzene to identify monoclonal antibodies which are suitable for conjugation to periodate-oxidized horseradish peroxidase, J. Immunol Methods 84:25–31.PubMedGoogle Scholar
  21. 21.
    Burkot, T.R., Zavala, F., Gwadz, R.W., Collins, F.H., Nussenzweig, R.S., and Roberts, D., 1984, Identification of malaria-infected mosquitoes by a two site enzyme linked immunosorbent assay, Am. J. Trop. Med. Hyg. 33: 227–231.PubMedGoogle Scholar
  22. 22.
    Carter, R., and Graves, P.M., 1988, Gametocytes, Wernsdorfer, W.H., and McGregor, I. (eds): in Malaria. Principles and Practices in Malariology, vol. 1, Churchhill Livingstone, Edinburgh, pp. 253–306.Google Scholar
  23. 23.
    Carvajal, H., de Herrera, M.A., Quintero, J., Alzate, A., and Herrera, S., 1989, Anopheles neivai: A vector of malaria in the Pacific lowlands of Colombia, Trans. R. Soc. Trop. Med. Hyg. 83:609.PubMedGoogle Scholar
  24. 24.
    Chen, D.H., Nussenzweig, R.S., Collins, W.E., 1976, Specificity of the circum-sporozoite precipitation antigen(s) of human and simian malarias, J. Parasitol. 62:636–637.PubMedGoogle Scholar
  25. 25.
    Chulay, J.D., 1989, Development of sporozoite vaccines for malaria, Trans. R. Soc. Trop. Med. Hyg. (Suppl) 83:61–66.PubMedGoogle Scholar
  26. 26.
    Coatney, G.R., Collins, W.E., Contacos, P.G., 1971, The Primate Malarias, U.S. Government Printing Office, District of Columbia, 336 p.Google Scholar
  27. 27.
    Cochrane, A.H., Collins, W.E., and Nussenzweig, R.S., 1984, Monoclonal antibody identifies circumsporozoite protein of Plasmodium malariae and detects a common epitope on Plasmodium brasilianum sporozoites, Infect. Immun. 45:592–595.PubMedGoogle Scholar
  28. 28.
    Cochrane, A.H., Gwadz, R.W., Barnwell, J.W., Kamboj, K.K., and Nussenzweig, R.S., 1986, Further studies on the antigenic diversity of the circumsporozoite proteins of the Plasmodium cynomolgi complex, Am. J. Trop. Med. Hyg. 35:479–487.PubMedGoogle Scholar
  29. 29.
    Cochrane, A.H., Ockenhouse, C.F., and Nussenzweig, R.S., 1984, Identification of circumsporozoite proteins in individual malaria-infected mosquitoes by Western blot analysis, J. Immunol. Methods 71:241–245.PubMedGoogle Scholar
  30. 30.
    Cochrane, A.H., Uni, S., Maracic, M., di Giovanni, L., Aikawa, M., and Nussenzweig, R.S., 1989, A circumsporozoite-like protein is present in micronemes of mature blood stages of malaria parasites, Exp. Parasitol. 69: 351–356.PubMedGoogle Scholar
  31. 31.
    Collins, F.H., Gwadz, R.W., Koontz, L.C., Zavala, F., and Nussenzweig, R.S., 1985, Laboratory assessment of a species-specific radioimmunoassay for the detection of malaria sporozoites in mosquitoes (Diptera: Culicidae), J. Med. Entomol. 22:121–129.PubMedGoogle Scholar
  32. 32.
    Collins, F.H., Mendez, M.A., Rasmussen, P.C., Mehaffey, N.J., Besansky, N.J., and Finnerty, V., 1987, A ribosomal RNA gene probe differentiates member species of the Anopheles gambiae complex, Am. J. Trop. Med. Hyg. 37:37–41.PubMedGoogle Scholar
  33. 33.
    Collins, F.H., Procell, P.M., Campbell, G.H., and Collins, W.E., 1988, Monoclonal antibody-based enzyme-linked immunosorbent assay (ELISA) for detection of Plasmodium malariae sporozoites in mosquitoes, Am. J. Trop. Med. Hyg. 38:283–288.PubMedGoogle Scholar
  34. 34.
    Collins, F.H., Zavala, F., Graves, P.M., Cochrane, A.H., Gwadz, R.W., and Akoh, J., Nussenzweig, R.S., 1984, First field trial of an immunoradiometric assay for the detection of malaria sporozoites in mosquitoes, Am. J. Trop. Med. Hyg. 33:538–543.PubMedGoogle Scholar
  35. 35.
    Coluzzi, M., 1988, Anopheline mosquitos: Genetic methods for species differentiation. Wernsdorfer, W.H., and McGregor, I. (eds): in Malaria. Principles and Practices in Malariology, vol. 1, Churchhill Livingstone, Edinburgh, pp. 411–430.Google Scholar
  36. 36.
    Corradetti, A., Verolini, R., Sebastiani, A., Proietti, A.M., and Amati, L., 1964, Fluorescent antibody testing with sporozoites of plasmodia, Bull. W.H.O. 30:747–751.PubMedGoogle Scholar
  37. 37.
    Davis, J.R., Murphy, J.R., Clyde, D.F., Baqar, S., Cochrane, A.H., Zavala, F., and Nussenzweig, R.S., 1989, Estimate of Plasmodium falciparum sporozoite content of Anopheles stephensi used to challenge human volunteers, Am. J. Trop. Med. Hyg. 40:128–130.PubMedGoogle Scholar
  38. 38.
    de Arruda, M., Carvalho, M.B., Nussenzweig, R.S., Maracic, M., Ferreira, A.W., and Cochrane, A.H., 1986, Potential vectors of malaria and their different susceptibility to Plasmodium falciparum and Plasmodium vivax in northern Brazil by immunoassay, Am. J. Trop. Med. Hyg. 35:873–881.PubMedGoogle Scholar
  39. 39.
    de Arruda, M., Nardin, E.H., Nussenzweig, R.S., and Cochranc, A.H., 1989, Sero-epidemiological studies of malaria in indian tribes and monkeys of the Amazon basin of Brazil, Am. J. Trop. Med. Hyg. 41:379–385.PubMedGoogle Scholar
  40. 40.
    Delves, C.J., Goman, M., Ridley, R.G., Matile, H., Lensen, T.H.W., Ponnudurai, T., and Scaife, J.G., 1989, Identification of Plasmodium falciparum-infected mosquitoes using a probe containing repetitive DNA, Mol. Biochem. Parasitol 32:105–112.PubMedGoogle Scholar
  41. 41.
    Dye, C., 1986, Vectorial capacity: Must we measure all its components? Parasitol. Today 2:203–209.PubMedGoogle Scholar
  42. 42.
    Esposito, F., Lombardi, S., Toure, Y.T., Zavala, F., and Coluzzi, M., 1986, Field observations on the use of antisporozoite monoclonal antibodies for determination of infection rates in malaria vectors, Parasitologia 28:30–37.Google Scholar
  43. 43.
    Ferreira, A., Enea, V., Morimoto, T., and Nussenzweig, V., 1986, Infectivity of Plasmodium burghei sporozoites measured with a DNA probe, Mol. Biochem. Parasitol. 19:103–109.PubMedGoogle Scholar
  44. 44.
    Ferreira, A., Morimoto, T., Altszuler, R., and Nussenzweig, V., 1987, Use of a DNA probe to measure the neutralization of Plasmodium berghei sporozoites by a monoclonal antibody, J. Immunol. 138:1256–1259.PubMedGoogle Scholar
  45. 45.
    Gabaldon, A., and Ulloa, G., 1978, A quick and easy method to determine the sporozoite index in mosquitoes, Trans. R. Soc. Trop. Med. Hyg. 72: 311–312.Google Scholar
  46. 46.
    Galinski, M.R., Arnot, D.E., Cochrane, A.H., Barnwell, J.W., Nussenzweig, R.S., and Enea, V., 1987, The circumsporozoite gene of the Plasmodium cynomolgi complex, Cell 48:311–319.PubMedGoogle Scholar
  47. 47.
    Garnham, P.C.C., 1966, Malaria Parasites and Other Haemosporidia, Blackwell, Oxford, 1114 p.Google Scholar
  48. 48.
    Garnham, P.C.C., 1988, Malaria parasites of man: Life-cycles and morphology (excluding ultrastructure), Wernsdorfer, W.H., and McGregor, I. (eds): in Malaria. Principles and Practices in Malariology, vol. 1, Churchhill Livingstone, Edinburgh, pp. 61–96.Google Scholar
  49. 49.
    Garrett-Jones, C., 1964, Prognosis for interruption of malaria transmission through assessment of the mosquito’s vectorial capacity, Nature 204:1173–1175.PubMedGoogle Scholar
  50. 50.
    Garrett-Jones, C., and Shidrawi, G.R., 1969, Malaria vectorial capacity of a population of Anopheles gambiae. An exercise in epidemiological entomology, Bull. W.H.O. 40:531–545.PubMedGoogle Scholar
  51. 51.
    Gillies, M.T., 1988, Anopheline mosquitoes: Vector behavior and bionomics. Wernsdorfer, W.H. and McGregor, I. (eds): in Malaria. Principles and Practices in Malariology, vol. 1, Churchhill Livingstone, Edinburgh, pp. 453–485.Google Scholar
  52. 52.
    Golenda, C.F., Starkweather, W.H., and Wirtz, R.A., 1990, The distribution of circumsporozoite (CS) protein in Anopheles stephensi mosquitoes infected with Plasmodium falciparum malaria, J. Histochem. Cytochem. 38:475–481.PubMedGoogle Scholar
  53. 53.
    Graves, P.M., Brabin, B.J., Charlwood, J.D., Burkot, T.R., Ginny, M., Paino, J., Cattani, J.A., Gibson, F.D., and Alpers, M.P., 1987, Reduction in incidence and prevalence of Plasmodium falciparum in under 5-year old children by permethrin impregnation of mosquito nets, Bull. W.H.O. 65: 869–877.PubMedGoogle Scholar
  54. 54.
    Graves, P.M., Burkot, T.R., Saul, A. Hayes, R., and Carter, R., 1990, Estimation of anopheline survival rate, vectorial capacity, and mosquito infection probability from vector infection rates in villages near Madang, Papua New Guinea, J. Appl. Ecol. 27:134–147.Google Scholar
  55. 55.
    Greenwood, B.M., 1989, Impact of culture and environmental changes on epidemiology and control of malaria and babesiosis, Trans. R. Soc. Trop. Med. Hyg. (Suppl.) 83:25–29.PubMedGoogle Scholar
  56. 56.
    Gunderson, J.H., Sogin, M.L., Wollett, G., Hollingdale, M., de la Cruz, V.F., Waters, A.P., and McCutchan, T.F., 1987, Structurally distinct, stagespecific ribosomes occur in Plasmodium, Science 238:933–937.PubMedGoogle Scholar
  57. 57.
    Harwood, R.F., and James, M.T., 1979, Entomology in Human and Animal Health, New York, Macmillian, 548 p.Google Scholar
  58. 58.
    Hoedojo, Saleha, S., Makimian, R., Campbell, J., Franke, E., Santiyo, K., Gambiro, N. and Sustriayu, N., 1987, A preliminary study on detection of Plasmodium falciparum sporozoites in Anopheles aconitus, Mosquito-Borne Dis. Bull. 3:64–66.Google Scholar
  59. 59.
    Holmberg, M., and Wigzell, H., 1987, DNA hybridization assays for detection of malaria sporozoites in mosquitoes, Parasitol. Today 3:380.PubMedGoogle Scholar
  60. 60.
    Ingram, R.L., Otken, L.B., and Jumper, R.J., 1961, Staining of malarial parasites by the fluorescent antibody technique, Proc. Soc. Exp. Biol. Med. 106:52–54.PubMedGoogle Scholar
  61. 61.
    Johnson, A.M., and Baverstock, P.R., 1989, Rapid ribosomal RNA sequencing and the phylogenetic analysis of protists, Parasitol. Today 5: 102–105.PubMedGoogle Scholar
  62. 62.
    Krotoski, W.A., Omar, M.S., and Jumper, J.R., 1974, Immunofluorescent staining of plasmodial oocysts in the mosquito, J. Parasitol. 60:344–347.PubMedGoogle Scholar
  63. 63.
    Lanar, D.E., McLaughlin, G.L., Wirth, D.F., Barker, R.J., Zolg, J.W., and Chulay, J.D., 1989, Comparison of thick films, in vitro culture and DNA hybridization probes for detecting Plasmodium falciparum malaria, Am. J. Trop. Med. Hyg. 40:3–6.PubMedGoogle Scholar
  64. 64.
    Lee, M., Harrison, B.A., and Lewis, G.E., 1990, A rapid sporozoite ELISA using 3,3′5,5′-tetramethylbenzidine as the substrate chromogen, Am. J. Trop. Med. Hyg. 42:314–319.PubMedGoogle Scholar
  65. 65.
    Lindsay, S.W., Snow, R.W., Broomfield, G.L., Janneh, M.S., Wirtz, R.A., and Greenwood, B.M., 1989, Impact of permethrin-treated bednets on malaria transmission by the Anopheles gambiae complex in The Gambia, Med. Vet. Entomol. 3:263–271.PubMedGoogle Scholar
  66. 66.
    Lombardi, S., Esposito, F., Zavala, F., Lamizana, L., Rossi, P., Sabatinelli, G., Nussenzweig, R.S., and Coluzzi, M., 1987, Detection and anatomical localization of Plasmodium falciparum circumsporozoite protein and sporozoites in the Afrotropical malaria vector Anopheles gambiae s.1, Am. J. Trop. Med. Hyg. 37:491–494.PubMedGoogle Scholar
  67. 67.
    Malaria Action Programme, 1987, World malaria situation 1985, World Health Stat. Q. 40:142–170.Google Scholar
  68. 68.
    McCutchan, T.F., de al Cruz, V.F., Lal, A.A., Gunderson, J.H., Elwood, H.J., and Sogin, M.L., 1988, Primary sequences of two small subunit ribosomal RNA genes from Plasmodium falciparum, Mol. Biochem. Parasitol 28:63–68.PubMedGoogle Scholar
  69. 69.
    McLaughlin, G.L., Ruth, J.L., Jablonski, E., Steketee, R., and Campbell, G.H., 1987, Use of enzyme-linked synthetic DNA in diagnosis of falciparum malaria, Lancet 1(8535):714–716.PubMedGoogle Scholar
  70. 70.
    Molineaux, L., and Gramiccia, G. 1980. The Garki Project. Research on the Epidemiology and Control of Malaria in the Sudan Savanna of West Africa, World Health Organization, Genera, 311 p.Google Scholar
  71. 71.
    Molineaux, L., Muir, D.A., Spencer, H.C., and Wernsdorfer, W.H., 1988, The Epidemiology of Malaria and Its Measurements. Wernsdorfer, W.H., and McGregor, I. (eds): in Malaria. Principles and Practices of Malariology, vol. 2, Churchhill Livingstone, Edinburgh, pp. 999–1089.Google Scholar
  72. 72.
    Muir, D.A., 1988, Anopheline mosquitoes: Vector reproduction, life-cycle and biotype, Wernsdorfer, W.H., and McGregor, I. (eds): in Malaria. Principles and Practices in Malariology, vol. 1, Churchhill Livingstone, Edinburgh, pp. 431–451.Google Scholar
  73. 73.
    Nardin, E., Gwadz, R.W., and Nussenzweig, R.S., 1979, Characterization of sporozoite surface antigens by indirect immunofluorescence: Detection of stage-and species-specific antimalarial antibodies, Bull. W.H.O. 57(Suppl. 1):211–217.PubMedGoogle Scholar
  74. 74.
    Nardin, E.H., and Nussenzweig, R.S., 1978, Stage-specific antigens on the surface membrane of sporozoites of malaria parasites, Nature 274:55–57.PubMedGoogle Scholar
  75. 75.
    Nardin, E.H., Nussenzweig, R.S., Nussenzweig, V., Harinasuta, K.T., Collins, W.E., Tapschaisri, P., and Chomcharn, Y., 1982, Circumsporozoite (CS) proteins of human malaria parasites Plasmodium falciparum and Plasmodium vivax, J. Exp. Med. 156:20–30.PubMedGoogle Scholar
  76. 76.
    Nussenzweig, R.S., Montuori, W., Spitalny, and Chen, D., 1973, Antibodies against sporozoites of human and simian malaria produced in rats, J. Immunol. 110:600–601.PubMedGoogle Scholar
  77. 77.
    Nussenzweig, V., and Nussenzweig, R.S., 1986, Development of a sporozoite malaria vaccine, Am. J. Trop. Med. Hyg. 35:678–688.PubMedGoogle Scholar
  78. 78.
    Peters, W., 1960, Studies on the epidemiology of malaria in New Guinea, Trans. Roy. Soc. Trop. Med. Hyg. 54:242–251.PubMedGoogle Scholar
  79. 79.
    Petros, B.L., Procell, P.M., Campbell, G.H., and Collins, F.H., 1989, A nitrocellulose membrane-based ELISA for the detection of Plasmodium infections in mosquitoes, Bull. W.H.O. 67:525–533.PubMedGoogle Scholar
  80. 80.
    Ponnudurai, T., Lensen, A.H.W., van Gemert, G.J.A., Bensink, M.P.E., Bolmer, M., and Meuwissen, J.H.E.Th., 1989, Sporozoite load of mosquitoes infected with Plasmodium falciparum, Trans. Roy. Soc. Trop. Med. Hyg. 83:67–70.PubMedGoogle Scholar
  81. 81.
    Post, R.J., and Crampton, J.M., 1987, Probing the unknown, Parasitol. Today 3:380–383.PubMedGoogle Scholar
  82. 82.
    Pringle, G., 1965, A count of the sporozoites in an oocyst of Plasmodium falciparum, Trans. R. Soc. Trop. Med. Hyg. 59:289–290.PubMedGoogle Scholar
  83. 83.
    Pringle, G., 1966, A quantitative study of naturally acquired malaria infections in Anopheles gambiae and Anopheles funestus in a highly malarious area of East Africa, Trans. R. Soc. Trop. Med. Hyg. 60:626–632.PubMedGoogle Scholar
  84. 84.
    Procell, P.M., Collins, W.E., and Campbell, G.H., 1988, Circumsporozoite protein of the human malaria parasite Plasmodium ovale identified with monoclonal antibodies, Infect. Immun. 56:376–379.PubMedGoogle Scholar
  85. 85.
    Ramsey, J.M., Beaudoin, R.L., Bawden, M.P., and Espinal, C.A., 1981, Taxonomic identification of malaria sporozoites by indirect fluorescent antibody assay, WHO/MAL81.971, 1 p.Google Scholar
  86. 86.
    Ramsey, J.M., Beaudoin, R.L., Bawden, M.P., and Espinal, C.A., 1983, Specific identification of Plasmodium sporozoites using an indirect fluorescent antibody method, Trans. Roy. Soc. Trop. Med. Hyg. 77:378–381.PubMedGoogle Scholar
  87. 87.
    Ramsey, J.M., Bown, D.N., Aron, J.L., Beaudoin, R.L., and Mendez, J.F., 1986, Field trail in Chiapas, Mexico, of a rapid detection method for malaria in anopheline vectors with low infection rates, Am. J. Trop. Med. Hyg. 35:234–238.PubMedGoogle Scholar
  88. 88.
    Reid, J.A., 1968, Anopheline Mosquitoes of Malaya and Borneo, Government of Malaysia, Kuala Lumpur, 520 p.Google Scholar
  89. 89.
    Robert, V., Verhave, J.P., Ponnudurai, T., Louwe, L., Scholtens, P., and Carnevale, P., 1988, Study of the distribution of circumsporozoite antigen in Anopheles gambiae infected with Plasmodium falciparum, using the enzymelinked immunosorbent assay, Trans. R. Soc. Trop. Med. Hyg. 82: 289–391.Google Scholar
  90. 90.
    Rosenberg, R., 1985, Inability of Plasmodium knowlesi sporozoites to invade Anopheles freeborni salivary glands, Am. J. Trop. Med. Hyg. 34:687–691.PubMedGoogle Scholar
  91. 91.
    Rosenberg, R., Andre, R.G., and Somchit, L., 1990, Highly efficient dry season transmission of malaria in Thailand, Trans. R. Soc. Trop. Med. Hyg. 84:22–28.PubMedGoogle Scholar
  92. 92.
    Rosenberg, R., Wirtz, R.A., Lanar, D.E., Sattabongkot, J., Hall, T., Waters, A.P., and Prasittisuk, C., 1989, Circumsporozoite protein heterogeneity in the human malaria parasite Plasmodium vivax, Science 245:973–976.PubMedGoogle Scholar
  93. 93.
    Rosenberg, R., Wirtz, R.A., Schneider, I., and Burge, R., 1990, An estimation of the number of malaria sporozoites ejected by a feeding mosquito, Trans. R. Soc. Trop. Med. Hyg. 84:209–212.PubMedGoogle Scholar
  94. 94.
    Russell, P.F., West, L.S., Manwell, R.D., and MacDonald, G., 1963, Practical Malariology, Oxford University Press, London, 2nd ed., 750 p.Google Scholar
  95. 95.
    Saul, A., Graves, P.M., and Kay, B.H., 1990, A cyclical model of disease transmission and its application to determining vectorial capacity from vector infection rates. J. Appl. Ecol. 27:123–133.Google Scholar
  96. 96.
    Service, M., 1976, Mosquito Ecology: Field sampling methods. Applied Science Publishers, London, 583 p.Google Scholar
  97. 97.
    Shute, P.G., and Maryon, M., 1952, A study of human oocysts as an aid to species diagnosis, Trans. R. Soc. Trop. Med. Hyg. 46:275–292.PubMedGoogle Scholar
  98. 98.
    Sinden, R.E., 1984, The biology of Plasmodium in the mosquito, Experientia 40:1330–1343.PubMedGoogle Scholar
  99. 99.
    Sodeman, W.A., Jr., and Jeffery, G.M., 1964, Immunofluorescent staining of sporozoites of Plasmodium gallinaceum, J. Parasitol. 50:477–478.Google Scholar
  100. 100.
    Sodeman, W.A., Jr., Jeffery, G.M., and Collins, W.E., 1964, Fluorescent antibody studies in experimental malarias. I. Studies on Plasmodium gallinaceum and Plasmodium berghei, Proc. First Int. Congr. Parasit. 1: 224–230.Google Scholar
  101. 101.
    Sturchler, D., 1989, How much malaria is there worldwide? Parasitol. Today 5:39–40; ibid. 5:384.Google Scholar
  102. 102.
    Subbarao, S.K., Adak, T., Vasantha, K., Joshi, H., Raghvendra, K., Cochrane, A.H., Nussenzweig, R.A., and Sharma, V.P., 1988. Susceptibility of Anopheles culicifacies species A and B to Plasmodium vivax and Plasmodium falciparum as determined by immunoradiometic assay, Trans. R. Soc. Trop. Med. Hyg. 82:394–397.PubMedGoogle Scholar
  103. 103.
    Tang, V.C.W., Hancock, K., and Maddison, S.E., 1984, Quantitative capacities of glutaraldehyde and sodium m-periodate coupled peroxidaseanti-human IgG conjugates in enzyme-linked immunoassays, J. Immunol. Methods 70:91–100.Google Scholar
  104. 104.
    Vanderberg, J.P., and Gwadz, R.W., 1980, The transmission by mosquitoes of plasmodia in the laboratory, Kreier, J.P. (ed): in Malaria, vol. 2, Academic, New York, pp. 154–234.Google Scholar
  105. 105.
    Vanderberg, J.P., Nussenzweig, R., and Most, H. 1969. Protective immunity produced by the injection of X-irradiated sporozoites of Plasmodium berghei. V. In vitro effects of immune serum on sporozoites, Milit. Med. (Suppl.) 134:1183–1190.Google Scholar
  106. 106.
    Verhave, J.P., Leewenberg, A.D.E.M., Ponnudurai, T., Meuwissen, J.H.E.Th., and van Druten, J.A.M., 1988, The biotin-streptavidin system in a two-site ELISA for the detection of plasmodial sporozoite antigen in mosquitoes, Parasite Immunol. 10:17–31.PubMedGoogle Scholar
  107. 107.
    Viriyakosol, S., Snounou, G., and Brown, K.N., 1989, The use of a DNA probe for the differentiation of rodent malaria strains and species, Mol. Biochem. Parasitol. 32:93–100.PubMedGoogle Scholar
  108. 108.
    Ward, R.A., 1962, Preservation of mosquitoes for malarial oocyst and sporozoite dissections, Mosquito News 22:306–307.Google Scholar
  109. 109.
    Warren, M., Mason, J., and Hobbs, J., 1975, Natural infections of Anopheles albimanus with Plasmodium in a small malaria focus, Am. J. Trop. Med. Hyg. 24: 545–546.PubMedGoogle Scholar
  110. 110.
    Waters, A.P., and McCutchan, T., 1989, Rapid, sensitive diagnosis of malaria based on ribosomal RNA, Lancet 17 June 8651:1343–1346.Google Scholar
  111. 111.
    Weber, J.L., and Hockmeyer, W.T., 1985, Structure of the circumsporozoite proteins in 18 strains of Plasmodium falciparum, Mol. Biochem. Parasitol. 15:305–316.PubMedGoogle Scholar
  112. 112.
    Wernsdorfer, W.H. 1980. The importance of malaria in the world. Kreier, J.P., (ed): in Malaria, vol. 1, Academic, New York, pp. 1–93.Google Scholar
  113. 113.
    Wharton, R.H., Eyles, D.E., Warren, M., Moorhouse, D.E., and Sandosham, A.A., 1963, Investigations leading to the identification of members of the Anopheles umbrosus group as the probable vectors of mouse deer malaria, Bull. W.H.O. 29:357–374.PubMedGoogle Scholar
  114. 114.
    White, G.B., 1989, Malaria, in Geographical Distribution of Arthropodborne Diseases and their Principal Vectors (WHO/VBC/89.967). 1:7–22. World Health Organization/Division of Vector Biology and Control, Geneva 134 p.Google Scholar
  115. 115.
    Wilkinson, R.N., 1980, Detection of malarial sporozoites by the enzyme linked immunosorbent assay (ELISA), PhD Dissertation, University of Texas Health Science Center at Houston, Texas. 80 p.Google Scholar
  116. 116.
    Wirtz, R.A., Burkot, T.R., Andre, R.G., Rosenberg, R., Collins, W.E., and Roberts, D.R., 1985, Identification of Plasmodium vivax sporozoites in mosquitoes using an enzyme-linked immunosorbent assay, Am. J. Trop. Med. Hyg. 34:1048–1054.PubMedGoogle Scholar
  117. 117.
    Wirtz, R.A., Burkot, T.R., Graves, P.M., and Andre, R.G., 1987, Field evaluation of enzyme-linked immunosorbent assays (ELISAs) for Plasmodium falciparum and Plasmodium vivax sporozoites in mosquitoes (Diptera: Culicidae) from Papua New Guinea, J. Med. Entomol. 24:433–437.PubMedGoogle Scholar
  118. 118.
    Wirtz, R.A., Charoenvit, Y., Burkot, T.R., Esser, K.M., Beaudoin, R.L., Collins, W.E., and Andre, R.G., 1991, Evaluation of monoclonal antibodies against Plasmodium vivax sporozoites for ELISA development. Med. Vet. Entomol. 5:(in press).Google Scholar
  119. 119.
    Wirtz, R.A., Zavala, F., Charoenvit, Y., Campbell, G.H., Burkot, T.R., Schneider, I., Esser, K.M., Beaudoin, R.L., and Andre, R.G., 1987, Comparative testing of monoclonal antibodies against Plasmodium falciparum sporozoites for ELISA development, Bull. W.H.O. 65:39–45.PubMedGoogle Scholar
  120. 120.
    World Health Organization, 1975, Manual on Practical Entomology in Malaria. World Health Organization, Geneva, 191 p.Google Scholar
  121. 121.
    World Health Organization, 1986, The use of DNA probes for malaria diagnosis: Memorandum from a WHO meeting, Bull. W.H.O. 64:641–652.Google Scholar
  122. 122.
    World Health Organization, 1987, Tropical Disease Research: A global Partnership, Geneva, WHO, 191 p.Google Scholar
  123. 123.
    World Health Organization, 1988, Tropical Disease Research: Science at Work, Geneva, WHO, 64 p.Google Scholar
  124. 124.
    Zavala, F. Cochrane, A.H., Nardin, E.H., Nussenzweig, R.S., and Nussenzweig, V., 1983, Circumsporozoite proteins of malaria parasites contain a single immunodominant region with two or more identical epitopes, J. Exp. Med. 157:1947–1957.PubMedGoogle Scholar
  125. 125.
    Zavala, F., Gwadz, R.W., Collins, F.H., Nussenzweig, R.S. and Nussenzweig, V., 1982, Monoclonal antibodies to circumsporozoite proteins identify the species of malaria parasite in infected mosquitoes, Nature 299:737–738.PubMedGoogle Scholar
  126. 126.
    Zavala, F., Musuda, A., Graves, P.M., Nussenzweig, V., and Nussenzweig, R.S., 1985, Ubiquity of the repetitive epitope of the CS protein in different isolates of human malaria parasites, J. Immunol. 135:2790–2793.PubMedGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Robert A. Wirtz
    • 1
  • Thomas R. Burkot
    • 2
  1. 1.Department of EntomologyWalter Reed Army Institute of ResearchWashington D.C.USA
  2. 2.Tropical Health ProgramQueensland Institute of Medical ResearchHerston, BrisbaneAustralia

Personalised recommendations