Skip to main content

Altimetry Based Geoid Determination at the German Processing and Archiving Facility within the ERS-1 Project

  • Conference paper
Determination of the Geoid

Part of the book series: International Association of Geodesy Symposia ((IAG SYMPOSIA,volume 106))

Abstract

The global, fast, and precise monitoring of the sea surface by satellite altimetry has become one of the most important sources for an improved estimate of a high resolving geoid. Thereby, increased data accuracy requires a more sophisticated modeling: the deviations between sea surface and the geoid, the sea surface topography, must be taken into account. Other existing surface data like terrestrial gravity anomalies are to be included and the estimate is to be stabilized by long wavelength geoid features, derived from satellite-only gravity field modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bosch W., (1987) High Degree Spherical Harmonics Analysis; paper presented at XIX. General Assembly of IUGG, Aug. 9–22, Vancouver, Canada

    Google Scholar 

  • Colombo O.L., (1981) Numerical Methods for Harmonic Analysis on the Sphere; Report No.310; Ohio State University; Columbus, Ohio

    Google Scholar 

  • Engelis Th., Rapp R.H., (1984) Global Ocean Circulation Patterns Based on SEASAT Altimeter Data and the GEM-L2 Gravity Field; Marine Geophys. Res.; 7, 55–67

    Article  Google Scholar 

  • ESA, (1985) ERS-1 Off-line Ground Segment: Proposed Harmonization scheme for National Contributions; ESA Remote Sensing Advisory Group; ESA/RS-AG(85)9; Paris

    Google Scholar 

  • Hard Ph., Reigber Ch., (1986) Precise Range and Range Rate Equipment (PRARE) Aboard ERS-1; Capabilities and Performance Assessment; see Proc. IGARSS86, Zürich; p. 1663–1666

    Google Scholar 

  • Heiskanen W.A., Moritz H., (1967) Physical Geodesy; H.Freeman & Co; San Francisco

    Google Scholar 

  • Helmert, F.R., (1884) Die mathematischen und physikalischen Theorien der höheren Geodäsie, Teil 2: Die physikalischen Theorien; Leipzig

    Google Scholar 

  • Levitus S., (1982) Climatological Atlas of the World Ocean; NOAA professional paper 13

    Google Scholar 

  • Moritz, H., (1980a) Advanced Physical Geodesy; Karlsruhe

    Google Scholar 

  • Moritz H., (1980b) Geodetic Reference System 1980; Bulletin Geodesique; 54(3) 395–408

    Article  Google Scholar 

  • Pavlis N., (1988) Modeling and Estimation of a Low Degree Geopotential Model from terrestrial Gravity Data; Report No. 386; Ohio State University; Columbus, Ohio

    Google Scholar 

  • Pellinen L.P., (1981) Effects of the Earth Ellipticity on Solving Geodetic Boundary Value Problem; Paper pres. at VIII Intern. Hotine Symp. Math. Geodesy; Como, Italy

    Google Scholar 

  • Pond, St., Pickard, G.L., (1983) Introductory Dynamical Oceanography. 2nd Ed.; Oxford

    Google Scholar 

  • Rapp R.H., Cruz J.Y., (1986) Spherical Harmonic Expansion of the Earth’s Gravitational Potential to Degree 360 Using 30’ Mean Anomalies; Report No. 376; Ohio State University; Columbus, Ohio

    Google Scholar 

  • Rapp R.H., Wichiencharoen C., (1984) A Comparison of Satellite Doppler and Gravimetric Geoid Undulations Considering Terrain-Corrected Gravity Data; J.Geophys.Res.; 89(B2), 1105–1111

    Article  Google Scholar 

  • Reigber Ch., Bosch W., Drozyner A., König R., Massmann F.H., Schwintzer P., (1990) RAT Product Specification Document; ERS-D-PSD-30000, Issue 1.1; Deutsches Geodätisches Forschungsinstitut, Abt.1 (DGFI); München

    Google Scholar 

  • Rosborough G.W., (1986) Satellite Orbit Perturbations due to the Geopotential; Report CSR-86–1; University of Texas; Austin

    Google Scholar 

  • Schwintzer P., Reigber Ch., Balmino G., Biancale R., (1990) GRIM-4 A New Global Earth Gravity Model (Status Report); paper presented at 1st Int. Geoid Commission Symposium; June 11–13; Milano (see this volume)

    Google Scholar 

  • Tapley B.D., Rosborough G.W., (1985) Geographically Correlated Orbit Error and its Effect on Satellite Altimetry Missions; J. Geophys. Res.; 90(C6), 11817–11831

    Article  Google Scholar 

  • Wenzel H.G., (1985) Hochauflösende Kugelfunktionsmodelle für das Gravitationspotential der Erde; Heft Nr. 137; Wissenschaftliche Arbeiten der Fachrichtung Vermessungswesen der Universität Hannover; Hannover

    Google Scholar 

  • Wyrtki K., (1974) The Dynamic Topography of the Pacific Ocean and its Fluctuations; Report HIG-74–5; Hawaii Institute of Geophysics; Hawaii

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this paper

Cite this paper

Bosch, W., Gruber, T. (1991). Altimetry Based Geoid Determination at the German Processing and Archiving Facility within the ERS-1 Project. In: Rapp, R.H., Sansò, F. (eds) Determination of the Geoid. International Association of Geodesy Symposia, vol 106. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3104-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3104-2_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97470-5

  • Online ISBN: 978-1-4612-3104-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics