On a Measure for the Discernibility between Different Ambiguity Solutions in the Static-Kinematic GPS-Mode

  • H.-J. Euler
  • B. Schaffrin
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 107)


The modeling of double-difference GPS phase observations for short baselines leads to the condition that the ambiguity parameters must be integers as long as residual biases can be neglected. However, not always is the combination of those integers the best choice which lie closest to the unconstrained least-squares solution. Thus we may investigate quite a number of different ambiguity solutions and try to discern between them by means of statistical testing.

Since the discernibility between different hypotheses turns out to be basically a function of the respective non-centrality parameters we are able to define a corresponding measure, called AMBIGLOP, which reflects the geometric behavior of the satellites over time with respect to the instantaneous baseline under investigation, and which can somehow be related to the more popular measures like PDOP or RDOP, for example.


Global Position System Observation Time Integer Ambiguity Phase Ambiguity Total Observation Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Dong, D.-N., Bock, Y. (1989). Global Positioning System Network Analysis with Phase Ambiguity Resolution Applied to Crustal Deformation Studies in California, Journal of Geophysical Research, Vol. 94, No. B4 pp 3949–3966Google Scholar
  2. Euler, H.-J. (1990). Untersuchungen zum rationellen Einsatz des GPS in kleinraeumigen Netzen, Deutsche Geodaetische Kommission, Reihe C (in print)Google Scholar
  3. Euler, H.-J., Becker, M., Sauermann, K. (1990). Rapid Ambiguity Fixing in Small-Scale Networks, GPS’90, September 3–7, 1990, Ottawa, Ontario, CanadaGoogle Scholar
  4. Goad, C.C. (1988). Investigation of an Alternate Method of Processing Global Positioning Survey Data Collected in Kinematic Mode, GPS-Techniques Applied to Geodesy and Surveying, Groten, E. and Strauss, R. (editors), Springer-VerlagGoogle Scholar
  5. Hahn, M., Heck, B., Jäger, R., Scheuring, R. (1989). Ein Verfahren zur Abstimmung der Signifikanzniveaus für allgemeine Fm,n —verteilte Teststatistiken —Teil I: Theorie, ZfV Vol. 114, pp. 234–248.Google Scholar
  6. Koch, K.-R. (1987). Parameter Estimation and Hypothesis Testing in Linear Models, Springer-VerlagGoogle Scholar
  7. Langley, R.B., Beutler, G., Delikaraglou, D. Nickerson, B., Santerre, R., Vanicek, V., Wells, D.E. (1984). Studies in the Application of the Global Positioning System to Differential Positioning, Technical Report No. 108, University of New BrunswickGoogle Scholar
  8. Lohmar, F.J. (1989). Aktuelle Informationen aus dem GPS- Planungsbuero, 22. DVWSeminar “Moderne Verfahren der Landesvermessung 12. bis 14. April 1989”, Universitaet der Bundeswehr, MuenchenGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • H.-J. Euler
    • 1
  • B. Schaffrin
    • 1
  1. 1.Department of Geodetic Science and SurveyingThe Ohio State UniversityColumbusUSA

Personalised recommendations