Skip to main content
  • 108 Accesses

Abstract

The title given this paper is a bit presumptuous, since one can hardly expect to cover the physics incorporated into all the codes already written and currently being written. We will focus on those codes which have been found to be particularly useful in the analysis and design of linacs. At that we will be a bit parochial and discuss primarily those codes used for the design of radio-frequency (rf) linacs, although the discussions of TRANSPORT and MARYLIE have little to do with the time structures of the beams being analyzed. We may also be a bit parochial in our choice of codes to discuss; this is a personal choice which fits within the confines of the time for oral presentation and the (self-imposed) limits of space in the proceedings. If we omit mention of somebody’s favorite code it is possibly due to ignorance, but hopefully just due to the need to be selective and not overly detailed in the presentation of this tutorial material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brown, K.L., D.C. Carey, Ch. Iselin, F. Rothacker, TRANSPORT, A Computer Program for Designing Charged Particle Beam Transport Systems, SLAC 91 (1973 rev.), NAL 91, and CERN 80–04.

    Google Scholar 

  2. Chidley, B.G., N.J. Desirens, Beam Transmission of RFQ1 Calculated Using the Finite Element Method for Space and Image Charges, IEEE Trans. Nucl. Sci. NS-32 (1985), pp. 2459–2461.

    Google Scholar 

  3. Courant, E.D., H.S. Snyder, Theory of the Alternating Gradient Synchrotron, Annals of Physics 3, (1958), p. 1–48.

    Article  MATH  Google Scholar 

  4. Crandall, K.R., R.H. Stokes, T.P. Wangler, RF Quadrupole Beam Dynamics Design Studies, Proc. 1979 Linear Accelerator Conf., Brookhaven National Laboratory, Report BNL-51134 (1979) p. 205.

    Google Scholar 

  5. Dawson, J.M., Methods Comput. Phys. 9, 1 (1970).

    Google Scholar 

  6. Dragt, A., Lectures on Nonlinear Orbit Dynamics, The Physics of High Energy Particle Accelerators, Fermi National Accelerator Laboratory, AIP Conference Proceedings No. 87, p. 147.

    Google Scholar 

  7. Dragt, A., L. Healy, F. Neri, R. Ryne, E. Forest, D. Douglas, MARYLIE, A Program for Non Linear Analysis of Accelerator and Beam Line Lattices, IEEE Trans. Nucl. Sci. NS-32, pp. 2311–2313.

    Google Scholar 

  8. Gluckstern, R.L., F. Neri, Longitudinal Coupling Impedance for a Beam Pipe with a Cavity, IEEE Trans. Nucl. Sci. NS-32 (1985), pp. 2403–2404.

    Google Scholar 

  9. Gluckstern, R.L., E.N. Opp, Calculation of Dispersion Curves in Periodic Structures, IEEE MAG-21, (1985), pp. 2344–2346.

    Google Scholar 

  10. Halbach, K., A Program for Inversion of System Analysis and Its Application to the Design of Magnets, Proc. Second Conf. on Magnet Technology, Oxford, England, 1967.

    Google Scholar 

  11. Halbach, K., R.F. Holsinger, SUPERFISH-A Computer Program for Evaluation of RF Cavities with Cylindrical Symmetry, Particle Accelerators 7, (1976), pp. 213–222.

    Google Scholar 

  12. Jones, M.E., W. Peter, IEEE Trans. Nuc. Sci. 32, 1794 (1985).

    Article  Google Scholar 

  13. Kapchinsky, I.M., V.A. Teplyakov, Prib. Tekh. Eksp. 2 (1970), p. 19.

    Google Scholar 

  14. Kapchinsky, I.M., V.V. Vladimirsky, Proc. Int. Conf on High Energy Accelerators and Instrumentation CERN, 1959, p. 274.

    Google Scholar 

  15. Klatt, R., T. Weiland, Wake Field Calculations with Three-Dimensional BCI Code, Proceedings of the 1986 Linear Accelerator Conference SLAC, 1986.

    Google Scholar 

  16. Krall, N.A., A.W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, New York, 1974, Chap. 8.

    Google Scholar 

  17. Landau, L.D., E.M Lifshitz, Classical Theory of Fields, Addison-Wesley, Reading, Mass., (1951).

    Google Scholar 

  18. Langdon, A.B., B.F. Lasinski, Methods Comput. Phys. 16 (1976), p. 327.

    Google Scholar 

  19. Lapostolle, P.M., Possible Emittance Increase Through Filamentation Due to Space Charge in Continuous Beams, IEEE Trans. Nucl. Sci. NS-18 (1971), p. 1101.

    Google Scholar 

  20. Sacherer, F.J., RMS Envelope Equations with Space Charge, IEEE Trans. Nucl. Sci. NS-18 (1971), p. 1105.

    Google Scholar 

  21. vanRienen, U., T. Weiland, Triangular Discretization Method for the Evaluation of RF Cavities with Cylindrical Symmetry, Particle Accelerators 20 (1987).

    Google Scholar 

  22. vanRienen, U., T. Weiland, Impedance of Cavities with Beam Ports above Cut-Off, Proceedings of the 1986 Linear Accelerator Conference, SLAC, 1986.

    Google Scholar 

  23. vanSteenbergen, A., Recent Developments in High Intensity Ion Beam Production and Pre acceleration, IEEE Trans. Nucl. Sci. NS-12, (1965), pp. 746–764.

    Google Scholar 

  24. Wangler, T.P., K.R. Crandall, R.S. Mills, M. Reiser, Relation Between Field Energy and RMS Emittance in Intense Particle Beams, IEEE Trans. Nucl. Sci. NS-32 (1985), pp. 2196–2200.

    Google Scholar 

  25. Weiland, T., Transverse Beam Cavity Interaction, Part I: Short Range Forces, Nuclear Instruments and Methods (NIM) 212, (1983), pp. 13–34.

    Article  Google Scholar 

  26. Weiland, T., On the Numerical Solution of Maxwell’s Equations and Applications in the Field of Accelerator Physics, Particle Accelerators 15 (1984), 245–292 and references therein.

    Google Scholar 

  27. Weiland, T., On the Unique Solution of Maxwellian Eigenvalue Problems in Three Dimensions, Particle Accelerators 17 (1985).

    Google Scholar 

  28. Weiland, T., Modes in Infinitely Repeating Structures of Cylindrical Symmetry, Proceedings of the 1986 Linear Accelerator Conference, SLAC, 1986.

    Google Scholar 

  29. Weiland, T., Proceedings of the URSI International Symposium on Electromagnetic Theory, Budapest, Hungary, August 1986.

    Google Scholar 

  30. Wollnik, H., J. Brezina, M. Berz, G10S - BEAMTRACE - A program package to determine optical properties of intense ion beams, Proceedings of the Second International Conference on Charged Particle Optics, Albuquerque, NM, Nuclear Instruments and Methods, in Physics Research A258 (1987).

    Google Scholar 

  31. Yu, S.S., P. Wilson, A. Drobot, Two and One-Half Dimension Particle-in-Cell Simulation of High-Power Klystrons, IEEE Trans. Nucl. Sci. NS-32, (1985), pp. 2918–2920.

    Google Scholar 

  32. Boris, J. proceedings of the 4th Conference on the Numerical Simulation of Plasmas, Naval Research Laboratory, Washington, DC (1970), p. 126.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Cooper, R.K. (1991). The Physics of Codes. In: Drobot, A.T. (eds) Computer Applications in Plasma Science and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3092-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3092-2_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97455-2

  • Online ISBN: 978-1-4612-3092-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics