Skip to main content

Computer Programs for High-Current Beam Transport in Accelerators

  • Conference paper
Computer Applications in Plasma Science and Engineering
  • 107 Accesses

Abstract

Numerical techniques exist for modeling particle beam dynamics in high current accelerators at several levels of fidelity. Equilibria can be determined with beam envelope codes, particle ray-tracing, Vlasov equilibrium solvers, and single-disk particle codes. The linear stability of these equilibria is addressed with dispersion relations solved numerically, linearized PIC codes, and single- and multi-component beam centroid programs. Beam nonlinear dynamics are investigated with multidimensional PIC codes employing either the complete electromagnetic field equations or various approximations to them. Each of these options is discussed, and several examples are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. M. McMillian, ed., “Electron Ring Accelerators, ” UCRL-18103 (Lawrence Berkeley Laboratory, Berkeley, 1968).

    Google Scholar 

  2. D. W. Kerst, Phys. Rev. 60, 47 (1941).

    Article  Google Scholar 

  3. D. W. Kerst and R. Serber, Phys. Rev. 60, 53 (1941).

    Article  Google Scholar 

  4. N. Rostoker, M. Reiser (ed.), Collective Methods of Acceleration (Harwood Academic Press, New York, 1979).

    Google Scholar 

  5. C. L. Olson, U. Schumacher, Collective Ion Acceleration (Springer, New York, 1979).

    Google Scholar 

  6. P. A. Channell, Laser Acceleration of Particles (American Institute of Physics, New York, 1982).

    Google Scholar 

  7. H. Hora, G. H. Miley (ed.), Laser Interaction and Related Plasma Phenomena, Vol. 6 (Plenum, New York, 1984), Sec. Vffl.

    Google Scholar 

  8. T. Katsouleas (ed.), IEEE Trans. Pias. Sei. PS-15, 88–237 (1987).

    Google Scholar 

  9. A. I. Pavlovskiy V. S. Bosamykin, V. A. Savchenko, A. P. Klement’ev, K. A. Morunov, V. S. Nikol’skii, A. I. Gerasimov, V. A. Tananakin, V. F. Basmanov, D. I. Zenkov, V. D. Selemir, A. S. Fedotkin, Dokl. Akad. Nauk SSSR 250, 1118 (1980) [Sov. Phys. Dokl. 25, 120 (1980)].

    Google Scholar 

  10. D. S. Prono, IEEE Trans. Nuc. Sei. NS-32, 3144 (1985).

    Google Scholar 

  11. R. B. Miller, IEEE Trans. Nuc. Sei. NS-32, 3149 (1985).

    Google Scholar 

  12. R. B. Miller, J. W. Poukey, B. G. Epstein, S. L. Shope, T. C. Genoni, M. Franz, B. B. Godfrey, R. J. Adler, A. Mondelli, IEEE Trans. Nuc. Sei. NS-28, 3343 (1981).

    Google Scholar 

  13. R. Adler, M. Campbell, B. Godfrey, D. Sullivan, T. Genoni, Part. Accel. 13, 25 (1983).

    Google Scholar 

  14. V. K. Neil, L. S. Hall, R. K. Cooper, Part. Accel. 9, 213 (1979).

    Google Scholar 

  15. R. J. Briggs, D. L. Birx, G. J. Caporaso, V. K. Neil, T. C. Genoni, Part. Accel. 18, 41 (1985).

    Google Scholar 

  16. J. Poukey, B. Godfrey, T. Hughes, M. Campbell, IEEE Trans. Nuc. Sei. NS-30, 2389 (1983).

    Google Scholar 

  17. G. J. Caporaso, W. A. Barletta, V. K. Neil, Part. Accel. 11, 71 (1980).

    Google Scholar 

  18. C. W. Roberson, IEEE Trans. Nuc. Sei. NS-28, 3433 (1981).

    Google Scholar 

  19. M. A. Wilson, IEEE Trans. Nuc. Sei. NS-28, 3375 (1981).

    Google Scholar 

  20. A. Mondelli, D. Chernin, S. D. Putnam, L. Schlitt, V. Bailey, Beams ’86, (Osaka Univ., Osaka, 1986), p. 755.

    Google Scholar 

  21. C. W. Roberson, A. Mondelli, and D. Chernin, Part. Accel. 17, 79 (1985).

    Google Scholar 

  22. A. I. Pavlovskii, G. D. Kuleshov, G. V. Sklizkov, Y. A. Zysin, A. I. Gerasimov, Dokl. Akad. Nauk SSSR 160, 68 (1965) [Sov. Phys. Dokl. 10, 30 (1967)].

    Google Scholar 

  23. C. A. Kapetanakos, P. Sprangle, D. P. Chernin, S. J. Marsh, I. Haber, Phys. Fluids 26, 1634 (1983).

    Article  MATH  Google Scholar 

  24. A. I. Pavlovskii, G. D. Kuleshov, A. I. Gerasimov, A. P. Klement’ev, V. O. Kuznetsov, V. A. Tananakin, A. D. Tarasov, Zh. Tekh. Fiz. 47, 370 (1977) [Sov. Phys. Tech. Phys. 22, 218 (1977)].

    Google Scholar 

  25. C. A. Kapetanakos, P. Sprangle, S. J. Marsh, Phys. Rev. Lett. 49, All (1982).

    Google Scholar 

  26. R. W. Landau, V. K. Neil, Phys. Fluids 9, 2412 (1966).

    Article  Google Scholar 

  27. B. B. Godfrey, T. P. Hughes, Part. Accel. 21, 173 (1987).

    Google Scholar 

  28. T. P. Hughes, Beams ’86 (Osaka Univ., Osaka, 1986), p. 815.

    Google Scholar 

  29. T. P. Hughes, B. B. Godfrey, Phys. Fluids 29, 1698 (1986).

    Article  Google Scholar 

  30. D. Chernin, P. Sprangle, Part. Accel. 12, 101 (1982).

    Google Scholar 

  31. B. B. Godfrey, B. S. Newberger, L. A. Wright, M. M. Campbell, “IFR Transport in Recirculating Accelerators, ” AMRC-R-741 (Mission Research Corporation, Albuquerque, 1985).

    Google Scholar 

  32. R. J. Briggs, “Suppression of Transverse Beam Breakup Modes in an Induction Accelerator by Gas Focusing, ” UCID-18633 (Lawrence Livermore National Laboratory, Livermore, 1980).

    Book  Google Scholar 

  33. B. Hui, Y. Y. Lau, Phys. Rev. Lett. 53, 2024 (1984).

    Article  Google Scholar 

  34. S. L. Shope, C. A. Frost, G. T. Leifeste, C. E. Crist, P. D. Kiekel, J. W. Poukey, B. B. Godfrey, IEEE Trans. Nuc. Sei. NS-32, 3091 (1985).

    Google Scholar 

  35. H. L. Buchanan, Phys. Fluids 30, 221 (1987).

    Article  Google Scholar 

  36. R. F. Schneider, J. R. Smith, Phys. Fluids 29, 3917 (1986).

    Article  Google Scholar 

  37. S. Humphries, J. Freeman, J. Greenly, G. W. Kuswa, C. W. Mendel, J. W. Poukey, D. Woodall, “Production and Post-Acceleration of Intense Ion Beams in Magnetically Insulated Gaps, ” SAND79–1673 (Sandia National Laboratories, Albuquerque, 1979).

    Book  Google Scholar 

  38. A. Hyder, F. Rose, A. Guenther (ed.), High Brightness Accelerators (Plenum, New York, 1988).

    Google Scholar 

  39. E. P. Lee, R. K. Cooper, Part. Accel. 7, 83 (1976).

    Google Scholar 

  40. E. P. Lee, Phys. Fluids 19, 60 (1976).

    Article  MathSciNet  Google Scholar 

  41. E. P. Lee, “Determination of the Radius of a Self-Pinched Beam from its Energy Integral, ” UCID-18495 (Lawrence Livermore National Laboratory, Livermore, 1980).

    Book  Google Scholar 

  42. D. Mitrovich, “A Model for Calculating Phermex Performance, ” AMRC-R-661 (Mission Research Corporation, Albuquerque, 1984).

    Google Scholar 

  43. G. Caporaso, private communication (1987).

    Google Scholar 

  44. W. B. Herrmannsfeldt, “Electron Trajectory Program, ” SLAC-226 (1979).

    Google Scholar 

  45. A. C. Paul, “EBQ Code - Transport of Space Charge Beams in Axially Symmetric Devices, ” UCID-8005 (Lawrence Berkeley Laboratory, Berkeley, 1978).

    Google Scholar 

  46. B. B. Godfrey, Phys. Fluids 30, 575 (1987).

    Article  Google Scholar 

  47. R. C. Davidson, Theory of Nonneutral Plasmas (Benjamin, New York, 1974), Ch. 3.1.

    Google Scholar 

  48. W. H. Bennett, Phys. Rev. 45, 890 (1934).

    Article  Google Scholar 

  49. W. H. Bennett, Phys. Rev. 98, 1584 (1955).

    Article  MATH  Google Scholar 

  50. L. A. Wright, B. B. Godfrey, “A Directory of Equilibrium Distribution Functions for Use in the Orbit Code, ” AMRC-R-413 (Mission Research Corporation, Albuquerque, 1982).

    Google Scholar 

  51. R. J. Adler, L. A. Wright, unpublished (1983).

    Google Scholar 

  52. G. J. Caporaso, A. G. Cole, IEEE Trans. Nuc. Sei. NS-30, 2618 (1983).

    Google Scholar 

  53. R. J. Adler, Part. Accel. 12, 39 (1982).

    Google Scholar 

  54. J. R. Freeman, “Simulations of Beam Transport in an IFR Propagation Channel, ” SAND86–0797 (Sandia National Laboratories, Albuquerque, 1986).

    Google Scholar 

  55. T. P. Hughes, B. B. Godfrey, Phys. Fluids 27, 1531 (1984).

    Article  Google Scholar 

  56. G. Molière, Z. Naturforsch. A3, 78 (1948).

    Google Scholar 

  57. E. Keil, E. Zeitler, W. Zinn, Z. Naturforsch. A15, 1031 (1960).

    MathSciNet  Google Scholar 

  58. I. Lerche, J. Math, Phys. 8, 1838 (1967).

    MATH  Google Scholar 

  59. G. J. Caporaso, W. A. Barletta, and V. K. Neil, Part. Accel. 11, 71 and 182 (1980).

    Google Scholar 

  60. J. F. Traub, Iterative Methods for the Solution of Equations (Prentice-Hall, Englewood Cliffs, 1964), Ch. 10.

    Google Scholar 

  61. B. B. Godfrey, “Muller’s Method Root Solver and CTSS Interface for Dispersion Relation Programs, ” AMRC-N-368 (Mission Research Corporation, Albuquerque, 1987).

    Google Scholar 

  62. I. O. Kerner, Num. Math. 8, 290 (1966).

    Article  MathSciNet  MATH  Google Scholar 

  63. D. Kahaner, “Zeroes of a Polynomial with Optional Error Bounds, ” C217 (Los Alamos National Laboratory, Los Alamos, 1979).

    Google Scholar 

  64. B. B. Godfrey, IEEE Trans. Pias. Sei. PS-7, 33 (1979).

    Google Scholar 

  65. R. C. Davidson, Theory of Nonneutral Plasmas (Benjamin, New York, 1974), p. 21–24.

    Google Scholar 

  66. L. F. Shampine, H. A. Watts, S. M. Davenport, SIAM Rev. 18, 376 (1976).

    Article  MathSciNet  MATH  Google Scholar 

  67. B. B. Godfrey, “Resistive Wall Instabilities in Radial Pulseline Accelerators, ” AMRC-R-345 (Mission Research Corporation, Albuquerque, 1982).

    Google Scholar 

  68. M. L. Sloan, W. E. Drummond, Phys. Rev. Lett. 31, 1234 (1973).

    Article  Google Scholar 

  69. P. Sprangle, A. T. Drobot, W. M. Manheimer, Phys. Rev. Lett. 36, 1880 (1976).

    Article  Google Scholar 

  70. B. B. Godfrey, B. S. Newberger, J. Appl. Phys. 50, 45 (1979).

    Article  Google Scholar 

  71. A. Friedman, R. N. Sudan, J. Denavit, J. Comp. Phys. 40, 1 (1981).

    Article  MATH  Google Scholar 

  72. T. P. Hughes, B. B. Godfrey, “KMRAD: A Linearized Particle Code for the Study of Resistive Instabilities, ” AMRC-R-364 (Mission Research Corporation, Albuquerque, 1982).

    Google Scholar 

  73. T. P. Hughes, B. S. Newberger, “Electrostatic Focusing in Compact Recirculating Accelerators, ” AMRC-R-896 (Mission Research Corporation, Albuquerque, 1987).

    Google Scholar 

  74. R. J. Adler, B. B. Godfrey, “Radial Pulseline Electron Accelerator Study, ” AMRC-R-368 (Mission Research Corporation, Albuquerque, 1982).

    Google Scholar 

  75. V. K. Neil, “The Image Displacement Effect in Linear Induction Accelerators, ” UCID-17976 (Lawrence Livermore National Laboratory, Livermore, 1978).

    Book  Google Scholar 

  76. S. Bodner, V. IC Neil, L. Smith, Part. Accel. 1, 327 (1970).

    Google Scholar 

  77. G. J. Caporaso, A. G. Cole, K. W. Struve, “Beam Breakup Instability Experiments on the Experimental Test Accelerator and Predictions for the Advanced Test Accelerator, ” UCRL-88262 (Lawrence Livermore National Laboratory, Livermore, 1983).

    Google Scholar 

  78. B. B. Godfrey, unpublished.

    Google Scholar 

  79. E. P. Lee, Phys. Fluids 21, 1327 (1978).

    Article  Google Scholar 

  80. G. J. Caporaso, A. G. Cole, E. J. Lauer, “IFR Hose Theory, ” UCRL-92874 (Lawrence Livermore National Laboratory, Livermore, 1985).

    Google Scholar 

  81. B. I. Cohen, ed., Multiple Time Scales (Academic Press, Orlando, 1985).

    MATH  Google Scholar 

  82. B. Adler, S. Fernbach, M. Rotenberg, eds., Meth. Comp. Phys., Vol. 9 (1972).

    Google Scholar 

  83. C. K. Birdsall, A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985).

    Google Scholar 

  84. B. B. Godfrey, R. J. Faehl, B. S. Newberger, W. R. Shanahan, L. E. Thode, Beams 77 (Cornell Univ., Ithaca, 1977), Vol. H, p. 541.

    Google Scholar 

  85. E. L. Lindman, J. Comp. Phys. 18, 66 (1975).

    Article  MATH  Google Scholar 

  86. T. P. Hughes, B. B. Godfrey, “Modified Betatron Accelerator Study, ” AMRC-R-655 (Mission Research Corporation, Albuquerque, 1984).

    Google Scholar 

  87. M. M. Campbell, B. B. Godfrey, “IVORY User’s Manual, ” AMRC-R-454 (Mission Research Corporation, Albuquerque, 1983).

    Google Scholar 

  88. C. W. Neilson, H.R. Lewis, Meth. Comp. Phys. 16, 367 (1976).

    Google Scholar 

  89. J. K. Boyd, “Numerical Determination of Injector Quality for High Beam Quality, ” UCRL-93456 (Lawrence Livermore National Laboratory, Livermore, 1985).

    Google Scholar 

  90. J. K. Boyd, “Simulation of an ATA-E-Beam Formed from a Laser-Generated Plasma, ”UCRL-92844 (Lawrence Livermore National Laboratory, Livermore, 1985).

    Google Scholar 

  91. B. B. Godfrey, “The IPROP Three-Dimensional Beam Propagation Code, ” AMRC-R-966 (Mission Research Corporation, Albuquerque, 1987).

    Google Scholar 

  92. E. P. Lee, “The New Field Equations, ” UCID-17286 (Lawrence Livermore National Laboratory, Livermore, 1976).

    Google Scholar 

  93. J. K. Boyd, E. P. Lee, S. S. Yu, “Aspects of Three Field Approximations: Darwin, Frozen, Empulse, ” UCID-20453 (Lawrence Livermore National Laboratory, Livermore, 1985).

    Book  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Godfrey, B.B. (1991). Computer Programs for High-Current Beam Transport in Accelerators. In: Drobot, A.T. (eds) Computer Applications in Plasma Science and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3092-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3092-2_6

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97455-2

  • Online ISBN: 978-1-4612-3092-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics