Skip to main content

Three-Dimensional Particle-in-Cell and Electromagnetic Simulations

  • Conference paper
Computer Applications in Plasma Science and Engineering
  • 108 Accesses

Abstract

In computational plasma physics the development of simulation techniques and their application has followed an evolution which has been determined, in part, by the cost, speed, and availability of computers. The ever increasing power of modern supercomputers has allowed a progression from modeling of one-dimensional simple problems to two-dimensional simulations which involve complicated geometry and multiple physical processes. One- and two-dimensional PIC codes have become standard research tools and have been applied to an extremely broad set of basic physics and engineering problems. Fully three-dimensional plasma and field models have the obvious attraction that they can deal with problems that are inherently three-dimensional and cannot be analyzed in lower dimensionality, problems in which the dimensionality is suspected to have a role, and design problems in which three-dimensional concepts are a possible option if risk can be assessed through computation or analysis. Until recently the use of general three-dimensional plasma codes, while conceptually attractive, was simply not affordable or highly impractical, requiring very long running times and excessive memory or auxiliary storage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Mankofsky, L. Seftor, C.-L. Chang, A. A. Mondelli, A. T. Drobot, J. Moura, S. T. Brandon, D. E. Nielsen, Jr., “Three-Dimensional PIC Simulations and Mixed Geometry Calculations Using ARGUS, ” Proceedings of the 12th Conference on the Numerical Simulation of Plasmas, San Francisco, CA, Sept. 20–23, 1987, Paper PM18.

    Google Scholar 

  2. D.B. Seidel, M. L. Kiefer, R. S. Coats, A. L. Siegel, J. P. Quintez, “QUICKSILVER—A 3-D, Electromagnetic PIC Code, ”Proceedings of the 12th Conference on the Numerical Simulation of Plasmas, San Francisco, CA, Sept. 20–23, 1987, Paper PT24.

    Google Scholar 

  3. B. Goplen, L. Ludeking, J. McDonald, G. Warren, R. Worl, “SOS User’s Manual, ” Mission Research Corporation Report MRC/WDC-R-158, Alexandria, VA, 1989.

    Google Scholar 

  4. T. Weiland, “On the Numerical Solution of Maxwell’s Equations and Applications in the Field of Accelerator Physics, ” Particle Accelerators 75 p. 245–292, 1984; and T. Weiland, “On the Unique Numerical Solution of Maxwellian Eigenvalue Problems in Three Dimensions, ” Particle Accelerators 17 p. 227–242, 1985.

    Google Scholar 

  5. M. N. Campbell, B. B. Godfrey, D. J. Sullivan, “IVORY User’s Manual, ” Mission Research Corporation Report AMRC-R-454, Albuquerque, NM, 1983.

    Google Scholar 

  6. B. B. Godfrey, D. R. Welch, “The IPROP Three-Dimensional Beam Propagation Code, ” Proceedings of the 12th Conference on the Numerical Simulation of Plasmas, San Francisco, CA, Sept. 20–23, 1987, Paper CM1.

    Google Scholar 

  7. O. Buneman, C. W. Barnes, J. C. Green, D. E. Nielsen, Jr., “Principles and Capabilities of 3-D, E-M Particle Simulations, ” J. Comp. Phys. 38, p. 1, 1980; and S. Y. Kim, H. Okuda, “Guiding Center Magnetostatic Particle Simulation Model in Three Dimensions,” J. Comp. Phys. 65 (1) p. 215, 1986.

    Google Scholar 

  8. A. Friedman, R. N. Sudan, J. Denavit, “A Linearized 3D Hybrid Code for Stability Studies of Field-Reversed Ion Rings, ” J. Comp. Phys. 40 (1) p. 1, 1981.

    Google Scholar 

  9. E. J. Horowitz, “QN3D: A Three Dimensional Quasi-Neutral Hybrid Particle-in-Cell Code with Applications to the Tilt Mode Instability in Field Reversed Configurations,” Lawrence Livermore National Laboratory Report UCRL-53808, Livermore, CA, 1987; and E. J. Horowitz, Don E. Shumaker, and David Anderson, J. Comp. Phys. 84 (2), 1989.

    Google Scholar 

  10. Berni Alder, Sidney Fembach, Manuel Rotenberg Eds., Chapter 1, and 4–8, in Methods of Computational Physics; Plasma Physics, Volume 9, Academic Press, New York, 1970.

    Google Scholar 

  11. Jay P. Boris, Ramy A. Shanny Eds. Proceedings of the Fourth Conference on Numerical Simulation of Plasmas, Nov. 2–3, 1970, Naval Research Laboratory, Washington, DC, 1971.

    Google Scholar 

  12. Berni Alder, Sidney Fernbach, Manuel Rotenberg Eds., Chapters 8–10, in Methods of Computational Physics: Controlled Fusion, Volume 16, Academic Press, New York, 1976.

    Google Scholar 

  13. R.W. Hockney, J.W. Eastwood Computer Simulation Using Particles, McGraw-Hill, New York, 1981.

    Google Scholar 

  14. J.M. Dawson, A.T. Lin, in Handbook of Plasma Physics, Volume 2, A. A. Galeev and R.N. Sudan Eds., North-Holland, Amsterdam, 1984.

    Google Scholar 

  15. Charles K. Birdsall, A. Bruce Langdon, Plasma Physics via Computer Simulations, McGraw-Hill, New York, 1985.

    Google Scholar 

  16. Jeremiah U. Brackbill, Bruce I. Cohen Eds., Chapters 8–11 in Multiple Time Scales, Academic Press, New York, 1985.

    Google Scholar 

  17. Maha Ashour-Abdalla, Daryl Ann Dutton Eds., Space Plasma Simulations, D. Reidel, Boston, 1985.

    Google Scholar 

  18. B. Lembege, J.W. Eastwood Eds., Proceedings of the Third International School on Numerical Simulation of Space Plasmas, Beaulieu-sur-Mer, France, June 22–27, 1987, North-Holland, Amsterdam, 1988.

    Google Scholar 

  19. J.U. Brackbill, J.J. Monaghan Eds., Proceedings of the Workshop on Particle Methods in Fluid Dynamics and Plasma Physics, Los Alamos, NM, April 13–15, 1987, North-Holland, Amsterdam, 1988.

    Google Scholar 

  20. William L. Kruer, Chapter 2, “Computer Simulation of Plasmas Using Particle Codes, ” in The Physics of Laser Plasma Interaction, Frontiers in Physics Series No. 73, Addison-Wesley, New York, 1988.

    Google Scholar 

  21. Toshiko Tajima, Computational Plasma Physics: With Applications to Fusion and Astrophysics, Addison-Wesley, New York, 1989.

    Google Scholar 

  22. P. T. Kirsten, G. S. Kino, W. E. Walters, in Space Charge Flow, McGraw Hill, New York, 1967.

    Google Scholar 

  23. W. B. Herrmannsfeldt, “Electron Trajectory Program, ” Stanford Linear Accelerator Center Report SLAC-226, 1979.

    Google Scholar 

  24. J. E. Boers, “Digital Computer Simulation of High-Current, Relativistic, and Field Emission Electron Tubes, ” Record of the IIth Symposium on Electron, Ion and Laser Beam Technology, R. F. M. Thornley, Ed., San Francisco Press, p. 527, 1971.

    Google Scholar 

  25. Kenneth Eppley, “Algorithms for the Self-Consistent Simulation of High Power Klystrons, ” Proceedings of the Linear Accelerator and Beam Optics Code Workshop, San Diego, CA, January 1988.

    Google Scholar 

  26. D. W. Hewett, C. W. Nielson, “A Multidimensional Quasineutral Plasma Simulation Model, ” J. Comp. Phys. 29, p. 219 (1978).

    Article  MATH  Google Scholar 

  27. Rodney J. Mason, “Implicit Moment PIC-Hybrid Simulation of Collisional Plasmas, ” J. Comp. Phys. 51 (3) p. 484, 1983.

    Article  MATH  Google Scholar 

  28. A. Mankofsky, R. N. Sudan, J. Denavit, “Hybrid Simulation of Ion Beams in Background Plasma, ” J. Comp. Phys. 70 (1), 1987.

    Google Scholar 

  29. Robert B. Wilhelmso, Jones H. Erickson, “Direct Solutions for Poisson’s Equation in Three Dimensions,” J. Comp. Phys. 25, p. 319, 1977; and also Clive Temperton, “Direct Methods for the Solution of the Discrete Poisson Equation: Some Comparisons,” J. Comp. Phys. 31, p. 1, 1979.

    Google Scholar 

  30. P. J. Roache, Chapter 3 in Computational Fluid Dynamics, Hermosa Press, Albuquerque, NM, 1976.

    Google Scholar 

  31. Stephen F. McCormick, Ed., Multigrid Methods, SIAM, Philadelphia, PA, 1987.

    MATH  Google Scholar 

  32. B. E. McDonald, “The Chebyshev Method for Solving Nonself-Adjoint Elliptic Equations on a Vector Computer,” J. Comp. Phys. 35, p. 147, 1980.

    Article  MATH  Google Scholar 

  33. Kazuyoshi Miki, Toshiyuki Takagi, “Numerical Solution of Poisson’s Equation with Arbitrary Shaped Boundaries Using a Domain Decomposition and Overlapping Technique,” J. Comp. Phys. 67, p. 263, 1986; and J. H. Whealton, R. W. McGaffey, P. S. Meszaros, “A Finite Difference 3-D Poisson-Vlasov Algorithm for Ions Extracted from a Plasma,” J. Comp. Phys. 63 (1) p. 20, 1986.

    Google Scholar 

  34. G. A. Bird, Chapter 7 in Molecular Gas Dynamics, Clarendon Press, Oxford, England, 1976.

    Google Scholar 

  35. A. Mankofsky, J. L. Seftor, C.-L. Chang, K. Ko, A. A. Mondelli, A. T. Drobot, J. Moura, W. Aimonetti, S. T. Brandon, D. E. Nielsen, Jr., K. M. Dyer, “Domain Decomposition and Particle Pushing for Multiprocessing Computers,” Computer Physics Communications 48, p. 155, 1988.

    Google Scholar 

  36. J. Tuchmantel, CERN Report RF 85–4, Geneva, Switzerland, July 1985: see also T. Weiland, Particle Accelerators 17 p. 227, 1985.

    Google Scholar 

  37. See for example C.-L. Chang, T. M. Antonsen, Jr., E. Ott, A. T. Drobot, Phys. Fluids 27, p. 2545 (1984).

    Google Scholar 

  38. J. Swegle, E. Ott, Phys. Fluids 24, p. 1821, 1981.

    Article  MATH  Google Scholar 

  39. S. Humphries, Jr., Nuclear Fusion 20, p. 1549, 1980.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Mankofsky, A., Drobot, A.T. (1991). Three-Dimensional Particle-in-Cell and Electromagnetic Simulations. In: Drobot, A.T. (eds) Computer Applications in Plasma Science and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3092-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3092-2_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97455-2

  • Online ISBN: 978-1-4612-3092-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics