Skip to main content

Numerical Models for High Beta Magnetohydrodynamic Flow

  • Conference paper
Computer Applications in Plasma Science and Engineering

Abstract

The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashour-Abdallah, M. Dutton, D. A. (1985) Space Plasma Simulations, D. Reidel, Boston, 1985.

    Book  Google Scholar 

  • Birdsall, C. K., A. B. Langdon (1985) Plasma Physics via Computer Simulation, McGraw-Hill, New York, 1985.

    Google Scholar 

  • Brackbill, J. U. (1976) High Beta Magnetohydrodynamics, Meth. Comp. Phys. 16.

    Google Scholar 

  • Brackbill, J. U. (1985) Fluid Modeling of Magnetized Plasmas, Space Sci. Rev. 42, 153.

    Article  Google Scholar 

  • Brackbill, J. U. (1987) On Modeling Angular Momentum and Vorticity in Compressible Fluid Flow, Computer Phys. Commun, 47, 1.

    MathSciNet  MATH  Google Scholar 

  • Brackbill, J. U., D. C. Barnes (1980) The Effect of Nonzero V’B on the Numerical Solution of the Magnetohydrodynamic Equations, J. Comput. Phys. 35, 426.

    Article  MathSciNet  MATH  Google Scholar 

  • Brackbill, J. U., S. R. Goldman (1983) Magnetohydrodynamics in Laser Fusion, Commun. Pure Appl. Math., 36, 415.

    Article  MathSciNet  MATH  Google Scholar 

  • Brackbill, J. U., H. M. Ruppel (1986) FLIP: A Method for Adaptively Zoned, Particle-In-Cell Calculations of Fluid Flows in Two Dimensions, J. Comput. Phys. 65, 314.

    Article  MathSciNet  MATH  Google Scholar 

  • Brackbill, J. U., J. S. Saltzman (1982) Adaptive Zoning for Singular Problems in Two Dimensions, J. Comput. Phys. 46, 342.

    Article  MathSciNet  MATH  Google Scholar 

  • Brackbill, J. U., D. W. Forslund, K. B. Quest, D. Winske (1984) Nonlinear Evolution of the Lower Hybrid Drift Instability, Phys. Fluids 27, 2682.

    Article  MATH  Google Scholar 

  • Braginskii, S. I. (1965) Transport Processes in a Plasma, Reviews of Plasma Physics 1, 205, M.A. Leontovich ed., Consultants Bureau, NY, 1965.

    Google Scholar 

  • Brecht, S. H., V. A. Thomas (1987) Multidimensional Simulations Using Hybrid Particle Codes, in Particle Methods in Fluid Dynamics and Plasma Physics, J. U. Brackbill and J. Monaghan eds., Elsevier, Amsterdam, 1987.

    Google Scholar 

  • Colella, P., P. R. Woodward (1984) The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations.J. Comput. Phys. 54, 174.

    Article  MathSciNet  MATH  Google Scholar 

  • Colombant, D., N. Winsor (1977) Phys. Rev. Lett., 38, 697. Dawson, J. M. (1983) Particle Simulation of Plasmas, Rev. Mod. Phys. 56, 403.

    Google Scholar 

  • Dukowicz, J. K., J. W. Kodis (1987) Accurate Conservative Remapping (Rezoning) for Arbitrary Lagrangian-Eulerian Computations, SI AM J. Sci. Stat. Comput, 8, 305.

    Article  MathSciNet  MATH  Google Scholar 

  • Eastwood, J. W. (1987) The Stability and Accuracy of EPIC Algorithms, Computer Phys. Comm., 44, 73.

    Article  MATH  Google Scholar 

  • Forslund, D. W. (1985) Fundamentals of Plasma Simulation, p3 in Space Plasma Simulations, op. cit.

    Google Scholar 

  • Forslund, D. W., J. U. Brackbill (1982) Magnetic Field Induced Surface Transport in Laser Irradiated Foils, Phys. Rev. Lett. 48, 1614.

    Article  Google Scholar 

  • Freidberg, J. P. (1982) Ideal Magnetohydrodynamic Theory of Magnetic Fusion Systems, Revs. Mod. Phys. 54, 801.

    Article  Google Scholar 

  • Friedrichs, K. O., H. Kranzer (1958) Notes on Magnetohydrodynamics VEI; Nonlinear Wave Motion, Report NYO-6486, Courant Institute of Mathematical Sciences, New York.

    Google Scholar 

  • Haerendal, G., G. Paschmann (1982) The Interaction of the Solar Wind with the Dayside Magnetosphere, in Magnetospheric Plasma Physics, A. Nishida ed., D. Reidel, Dordrecht, 1982.

    Google Scholar 

  • Hawley, J. F., L. L. Smarr, and J. R. Wilson (1984) A Numerical Study of Nonspherical Black Hole Accretion: II, Finite Differencing and Code Calibration, Ap. J. Suppl. 55, 211.

    Article  Google Scholar 

  • Hirt, C. W., A. A. Amsden, J. L. Cook (1974) J. Comput. Phys. 1, 227.

    Article  Google Scholar 

  • Hones, E. W. (1984) Magnetic Reconnection in Space and Laboratory Plasmas, E.W.Hones ed., Geophysical Monograph 30, American Geophysical Union, Washington D.C., 1984.

    Google Scholar 

  • Jeffery, A. (1966) Magnetohydrodynamics, Interscience, NY, 1966.

    Google Scholar 

  • Kundu, M. R., G. D. Holman eds. (1985) Unstable Current Systems and Plasma Instabilities in Astrophysics, D. Reidel, Dordrecht, 1985.

    Google Scholar 

  • Lax, P. D., B. Wendroff (1960) Comm. Pure Appl. Math., 13, 217.

    Article  MathSciNet  MATH  Google Scholar 

  • Marder, B. (1987) A Method for Incorporating Gauss’ Law into Electromagnetic PIC Codes.J. Comput. Phys. 68, 48.

    Article  MATH  Google Scholar 

  • Milroy, R. D., J. U. Brackbill (1982) Numerical Studies of a Field-Reversed Theta-Pinch Plasma, Phys. Fluids 25, 775.

    Article  MATH  Google Scholar 

  • Moffatt, H. K. (1978) Magnetic Field Generation in Electrically Conducting Fluid, pp 54–62, Cambridge University Press, New York, 1978.

    Google Scholar 

  • Palmadesso, P. J., S. R. Ganguli, J. A. Fedder, and J. G. Lyon (1987) Numerical Simulations of Magnetospheric Plasmas Review and Quadrennial Report to the IUGG, Rev. Geophys. 25, 599.

    Article  Google Scholar 

  • Priest, E. R. (1985) Solar System Magnetic Fields, E. R Priest ed., D. Reidel, Dordrecht, 1985.

    Google Scholar 

  • Richtmyer, R. D., K. W. Morton (1967) Difference Methods for Initial Value Problems, John Wiley, New York, 1967.

    Google Scholar 

  • Roberts, B. (1985) Magnetohydrodynamic Waves, in Solar System Magnetic Fields, E.R. Priest ed., D. Reidel, Dordrecht, 1985.

    Google Scholar 

  • Roberts, K. V., D. E. Potter (1968) Magnetohydrodynamic Calculations, Meth. Comp. Phys. 9, 339.

    Article  Google Scholar 

  • Smolarkiewicz, P. K. (1984) A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion, J. Comput. Phys. 54, 325.

    Article  Google Scholar 

  • Strauss, H. R. (1976) Reduced Magnetohydrodynamic Equations, Phys. Fluids 19, 134.

    Article  Google Scholar 

  • Thompson, J. F., Z. U. A. Warsi, and C. W. Mastin (1985), Numerical Grid Generation, North-Holland, New York, 1985.

    MATH  Google Scholar 

  • Zalesak, S. T. (1987), A Preliminary Comparison of Modern Shock-Capturing Schemes: Linear Advection, Advances in Computer Methods for Partial Differential Equations VI, R. Vichnevetsky and R.S. Stepleman eds., International Association for Mathematics and Computers in Simulation (IMACS), New Brunswick, NJ, 1987.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Brackbill, J.U. (1991). Numerical Models for High Beta Magnetohydrodynamic Flow. In: Drobot, A.T. (eds) Computer Applications in Plasma Science and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3092-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3092-2_16

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97455-2

  • Online ISBN: 978-1-4612-3092-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics