Physical Effects and Numerical Simulation of X-Ray Transport in Plasmas

  • John P. Apruzese
Conference paper


As drivers, such as lasers and pulsed power generators, for laboratory plasmas have steadily increased in power and/or total deliverable energy, the increased size and density of the plasmas created by such devices has frequently resulted in higher plasma opacities. The effects of substantial optical depth upon plasmas can be divided into two general categories. First, the radiation diagnostics (primarily x-rays) are altered. Such quantities as line ratios and widths inevitably change from their respective optically thin values when the photons are subjected to reabsorption within the plasma. The second category of physical effects induced by radiation transport may be generally categorized as dynamic. Cooling rates and thermal balance within a plasma are directly influenced by the transport of photons within the plasma, as well as by the degree to which photons may escape the plasma without interaction, that is, the magnitude of the photon escape probability. Ionization fractions and level populations are also altered from their optically thin values by photon trapping. This has a direct effect upon the viability of certain x-ray laser schemes. A host of numerical techniques have been developed to treat radiation transport in plasmas. Many of these numerical algorithms received their initial impetus from the astrophysics community, and have been adapted to situations encountered in laboratory plasmas. In this article the physical effects of x-ray transport on laboratory plasmas are reviewed through reference to specific examples. Numerical techniques, both multifrequency (multigroup) and escape probability methods, are surveyed and assessed for effectiveness and appropriateness depending upon the total context of the numerical simulation as well as the specific plasma conditions expected to be encountered.


Radiative Transfer Optical Depth Stellar Atmosphere Laboratory Plasma Escape Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Mihalas, Stellar Atmospheres (Freeman, San Francisco, 1978).Google Scholar
  2. 2.
    D. G. Hummer, C. V. Kunasz, P. B. Kunasz, Comp. Phys. Comm. 6, 38 (1973).CrossRefGoogle Scholar
  3. 3.
    K. G. Whitney, J. Davis, J. P. Apruzese, Phys. Rev. A 22, 2196 (1980).CrossRefGoogle Scholar
  4. 4.
    J. P. Apruzese, J. Davis, D. Duston, K. G. Whitney, J. Quant. Spectrosc. Radiat. Transfer 25, 479 (1980).CrossRefGoogle Scholar
  5. 5.
    J. P. Apruzese, J. Quant. Spectrosc. Radiat. Transfer 25, 419 (1981).CrossRefGoogle Scholar
  6. 6.
    J. C. Weisheit, J. Quant. Spectros. Radiat. Transfer 22, 585 (1979).CrossRefGoogle Scholar
  7. 7.
    C. Chenais-Popovics, et al., J. Quant Spectrosc. Radiat. Transfer 36, 355 (1986).CrossRefGoogle Scholar
  8. 8.
    R. C. Mancini, R. F. Joyce, C. F. Hooper, Jr., J. Phys. B. 20, 2975 (1987).CrossRefGoogle Scholar
  9. 9.
    H. R. Griem, M. Blaha, P. C. Kepple, Phys. Rev. A 19, 2421 (1979).CrossRefGoogle Scholar
  10. 10.
    J. P. Apruzese, J. Davis, D. Duston, R. W. Clark, Phys. Rev. A 29, 246 (1984).CrossRefGoogle Scholar
  11. 11.
    A. K. Hui, B. H. Armstrong, A. A. Wray, J. Quant. Spectrosc. Radiat. Transfer 19, 509 (1978).CrossRefGoogle Scholar
  12. 12.
    E. H. Avrett, D. G. Hummer, Mon. Not. R. Astron. Soc. 130, 295 (1965).Google Scholar
  13. 13.
    J. P. Apruzese, J. Davis, Phys. Rev. A 31, 2976 (1985).CrossRefGoogle Scholar
  14. 14.
    D. Duston, R. W. Clark, J. Davis, J. P. Apruzese, Phys. Rev. A 27, 1441 (1983).CrossRefGoogle Scholar
  15. 15.
    V. V. Sobolev, Sov. Astron. 1, 678 (1957).Google Scholar
  16. 16.
    A. K. Dave, G. J. Pert, J. Phys. B 18, 1027 (1985).CrossRefGoogle Scholar
  17. 17.
    F. E. Irons, J. Phys. B 8, 3044 (1975).CrossRefGoogle Scholar
  18. 18.
    F. E. Irons, J. Phys. B 9, 2737 (1976).CrossRefGoogle Scholar
  19. 19.
    F. E. Irons, Aust. J. Phys. 33, 25 (1980).Google Scholar
  20. 20.
    G. J. Tallents, J. Phys. B 13, 3057 (1980).CrossRefGoogle Scholar
  21. 21.
    A. M. Malvezzi, et al., J. Phys. B 12, 1437 (1979).CrossRefGoogle Scholar
  22. 22.
    R. W. Lee, J. Quant. Spectrosc. Radiat. Transfer 27, 87 (1982).CrossRefGoogle Scholar
  23. 23.
    G. B. Rybicki, Conference on Line Formation in the Presence of Magnetic Fields, National Center for Atmospheric Research Report, Boulder, 1971 (unpublished).Google Scholar
  24. 24.
    A. V. Vinogradov, 1.1. Sobelman, E. A. Yukov, Sov. J. Quantum Electron. 5, 59 (1975).Google Scholar
  25. 25.
    B. A. Norton, N. J. Peacock, J. Phys. B 8, 989 (1975).CrossRefGoogle Scholar
  26. 26.
    J. P. Apruzese, J. Davis, K. G. Whitney, J. Appl. Phys. 53, 4020 (1982).CrossRefGoogle Scholar
  27. 27.
    J. P. Apruzese, J. Quant. Spectrosc. Radiat. Transfer 33, 71 (1985).CrossRefGoogle Scholar
  28. 28.
    J. P. Apruzese, P. C. Kepple, K. G. Whitney, J. Davis, D. Duston, Phys. Rev. A 24, 1001 (1981).CrossRefGoogle Scholar
  29. 29.
    A. Hauer, K. G. Whitney, P. C. Kepple, J. Davis, Phys. Rev. A 28, 963 (1983).CrossRefGoogle Scholar
  30. 30.
    A. Hauer, R. D. Cowan, B. Yaakobi, O. Barnouin, R. Epstein, Phys. Rev. A 34, 411 (1986).CrossRefGoogle Scholar
  31. 31.
    S. Suckewer, C. H. Skinner, H. Milchberg, C. Keane, D. Voorhees, Phys. Rev. Lett. 55, 1753 (1985).CrossRefGoogle Scholar
  32. 32.
    J. S. Wark, et al., Bull. Am. Phys. Soc. 31, 1417 (1986).Google Scholar
  33. 33.
    V. V. Vikhrev, K. G. Gureev, Sov. Phys. Tech. Phys. 23, 1295 (1978).Google Scholar
  34. 34.
    R. W. Clark, J. Davis, and F. L. Cochran, Phys. Fluids 29, 1971 (1986).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 1991

Authors and Affiliations

  • John P. Apruzese

There are no affiliations available

Personalised recommendations