Skip to main content

Physical Effects and Numerical Simulation of X-Ray Transport in Plasmas

  • Conference paper
Computer Applications in Plasma Science and Engineering
  • 104 Accesses

Abstract

As drivers, such as lasers and pulsed power generators, for laboratory plasmas have steadily increased in power and/or total deliverable energy, the increased size and density of the plasmas created by such devices has frequently resulted in higher plasma opacities. The effects of substantial optical depth upon plasmas can be divided into two general categories. First, the radiation diagnostics (primarily x-rays) are altered. Such quantities as line ratios and widths inevitably change from their respective optically thin values when the photons are subjected to reabsorption within the plasma. The second category of physical effects induced by radiation transport may be generally categorized as dynamic. Cooling rates and thermal balance within a plasma are directly influenced by the transport of photons within the plasma, as well as by the degree to which photons may escape the plasma without interaction, that is, the magnitude of the photon escape probability. Ionization fractions and level populations are also altered from their optically thin values by photon trapping. This has a direct effect upon the viability of certain x-ray laser schemes. A host of numerical techniques have been developed to treat radiation transport in plasmas. Many of these numerical algorithms received their initial impetus from the astrophysics community, and have been adapted to situations encountered in laboratory plasmas. In this article the physical effects of x-ray transport on laboratory plasmas are reviewed through reference to specific examples. Numerical techniques, both multifrequency (multigroup) and escape probability methods, are surveyed and assessed for effectiveness and appropriateness depending upon the total context of the numerical simulation as well as the specific plasma conditions expected to be encountered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Mihalas, Stellar Atmospheres (Freeman, San Francisco, 1978).

    Google Scholar 

  2. D. G. Hummer, C. V. Kunasz, P. B. Kunasz, Comp. Phys. Comm. 6, 38 (1973).

    Article  Google Scholar 

  3. K. G. Whitney, J. Davis, J. P. Apruzese, Phys. Rev. A 22, 2196 (1980).

    Article  Google Scholar 

  4. J. P. Apruzese, J. Davis, D. Duston, K. G. Whitney, J. Quant. Spectrosc. Radiat. Transfer 25, 479 (1980).

    Article  Google Scholar 

  5. J. P. Apruzese, J. Quant. Spectrosc. Radiat. Transfer 25, 419 (1981).

    Article  Google Scholar 

  6. J. C. Weisheit, J. Quant. Spectros. Radiat. Transfer 22, 585 (1979).

    Article  Google Scholar 

  7. C. Chenais-Popovics, et al., J. Quant Spectrosc. Radiat. Transfer 36, 355 (1986).

    Article  Google Scholar 

  8. R. C. Mancini, R. F. Joyce, C. F. Hooper, Jr., J. Phys. B. 20, 2975 (1987).

    Article  Google Scholar 

  9. H. R. Griem, M. Blaha, P. C. Kepple, Phys. Rev. A 19, 2421 (1979).

    Article  Google Scholar 

  10. J. P. Apruzese, J. Davis, D. Duston, R. W. Clark, Phys. Rev. A 29, 246 (1984).

    Article  Google Scholar 

  11. A. K. Hui, B. H. Armstrong, A. A. Wray, J. Quant. Spectrosc. Radiat. Transfer 19, 509 (1978).

    Article  Google Scholar 

  12. E. H. Avrett, D. G. Hummer, Mon. Not. R. Astron. Soc. 130, 295 (1965).

    Google Scholar 

  13. J. P. Apruzese, J. Davis, Phys. Rev. A 31, 2976 (1985).

    Article  Google Scholar 

  14. D. Duston, R. W. Clark, J. Davis, J. P. Apruzese, Phys. Rev. A 27, 1441 (1983).

    Article  Google Scholar 

  15. V. V. Sobolev, Sov. Astron. 1, 678 (1957).

    Google Scholar 

  16. A. K. Dave, G. J. Pert, J. Phys. B 18, 1027 (1985).

    Article  Google Scholar 

  17. F. E. Irons, J. Phys. B 8, 3044 (1975).

    Article  Google Scholar 

  18. F. E. Irons, J. Phys. B 9, 2737 (1976).

    Article  Google Scholar 

  19. F. E. Irons, Aust. J. Phys. 33, 25 (1980).

    Google Scholar 

  20. G. J. Tallents, J. Phys. B 13, 3057 (1980).

    Article  Google Scholar 

  21. A. M. Malvezzi, et al., J. Phys. B 12, 1437 (1979).

    Article  Google Scholar 

  22. R. W. Lee, J. Quant. Spectrosc. Radiat. Transfer 27, 87 (1982).

    Article  Google Scholar 

  23. G. B. Rybicki, Conference on Line Formation in the Presence of Magnetic Fields, National Center for Atmospheric Research Report, Boulder, 1971 (unpublished).

    Google Scholar 

  24. A. V. Vinogradov, 1.1. Sobelman, E. A. Yukov, Sov. J. Quantum Electron. 5, 59 (1975).

    Google Scholar 

  25. B. A. Norton, N. J. Peacock, J. Phys. B 8, 989 (1975).

    Article  Google Scholar 

  26. J. P. Apruzese, J. Davis, K. G. Whitney, J. Appl. Phys. 53, 4020 (1982).

    Article  Google Scholar 

  27. J. P. Apruzese, J. Quant. Spectrosc. Radiat. Transfer 33, 71 (1985).

    Article  Google Scholar 

  28. J. P. Apruzese, P. C. Kepple, K. G. Whitney, J. Davis, D. Duston, Phys. Rev. A 24, 1001 (1981).

    Article  Google Scholar 

  29. A. Hauer, K. G. Whitney, P. C. Kepple, J. Davis, Phys. Rev. A 28, 963 (1983).

    Article  Google Scholar 

  30. A. Hauer, R. D. Cowan, B. Yaakobi, O. Barnouin, R. Epstein, Phys. Rev. A 34, 411 (1986).

    Article  Google Scholar 

  31. S. Suckewer, C. H. Skinner, H. Milchberg, C. Keane, D. Voorhees, Phys. Rev. Lett. 55, 1753 (1985).

    Article  Google Scholar 

  32. J. S. Wark, et al., Bull. Am. Phys. Soc. 31, 1417 (1986).

    Google Scholar 

  33. V. V. Vikhrev, K. G. Gureev, Sov. Phys. Tech. Phys. 23, 1295 (1978).

    Google Scholar 

  34. R. W. Clark, J. Davis, and F. L. Cochran, Phys. Fluids 29, 1971 (1986).

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Apruzese, J.P. (1991). Physical Effects and Numerical Simulation of X-Ray Transport in Plasmas. In: Drobot, A.T. (eds) Computer Applications in Plasma Science and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3092-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3092-2_13

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97455-2

  • Online ISBN: 978-1-4612-3092-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics