Skip to main content

Inertial Confinement Fusion: Computer Simulation

  • Conference paper
Computer Applications in Plasma Science and Engineering

Abstract

The complex hydrodynamic and transport processes associated with the implosion of an inertial confinement fusion (ICF) pellet place considerable demands on numerical simulation programs. Processes associated with implosion can usually be described using relatively simple models, but their complex interplay requires that programs model most of the relevant physical phenomena accurately. Most hydrodynamic codes used in ICF incorporate a one-fluid, two-temperature model. Electrons and ions are assumed to flow as one fluid (no charge separation). Due to the relatively weak coupling between the ions and electrons, each species is treated separately in terms of its temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. B. Zimmerman, Lawrence Livermore National Laboratory Report, UCRL-75173 (1973).

    Google Scholar 

  2. E. B. Goldman, Laboratory for Laser Energetics Report No. 16 (1973); No. 36 (1976).

    Google Scholar 

  3. M. Born and E. Wolf, Principles of Optics, 5th ed. (Pergamon Press, New York, 1975), p. 123.

    Google Scholar 

  4. W. Heitler, The Quantum Theory of Radiation, 3rd ed. (Oxford Univ. Press, Oxford, 1954).

    MATH  Google Scholar 

  5. J. Dawson, C. Oberman, Phys. Fluids 5, 517 (1962).

    Article  MathSciNet  MATH  Google Scholar 

  6. J. M. Dawson, Phys. Fluids 7, 981 (1964).

    Article  Google Scholar 

  7. H. G. Ahlstrom, R. A. Haas, K.R. Manes, E. K. Storm, D. W. Phillon, V. C. Rupert, M. J. Boyle, Bull. Am. Phys. Soc. 21, 1046 (1976).

    Google Scholar 

  8. Lawrence Livermore Laboratory Laser Program Annual Report, UCRL-50021–75, 307 (1975).

    Google Scholar 

  9. V.L. Ginzburg, Propagation of Electromagnetic Waves in Plasmas, 2nd ed. (Pergamon Press, New York, 1970), p. 260 ff.

    Google Scholar 

  10. J. P. Friedberg, R. W. Mitchell, R. L. Morse, L. I. Rudsinski, Phys. Rev. Lett. 28, 795 (1972).

    Article  Google Scholar 

  11. R. P. Godwin, Phys. Rev. Lett. 28, 85 (1972).

    Article  Google Scholar 

  12. D. W. Forslund, J. M. Kindel, K. Lee, E. L. Lindman, R. L. Morse, Phys. Rev. A 11, 679 (1975).

    Article  Google Scholar 

  13. K. G. Estabrook, E. J. Valco, W. L. Kruer, Phys. Fluids 18, 1151 (1975).

    Article  Google Scholar 

  14. K. G. Estabrook, W. L. Kruer, Phys. Rev. Lett. 40, 42 (1978).

    Article  Google Scholar 

  15. W. L. Kruer, Lawrence Livermore Laboratory Report, UCRL-81896 (1978).

    Google Scholar 

  16. Ya. B. Zel’dovich, Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic Press, New York, 1967).

    Google Scholar 

  17. P. J. Roache, Computational Fluid Dynamics (Hermosa Publishers, Albuquerque, NM, 1976), Chap. V

    Google Scholar 

  18. J. P. Boris and D. L. Book, in Methods in Computational Physics, eds. B. Alder, S. Fernbach, M. Rotenberg, J. Killeen (Academic Press, New York, 1976), Vol. 16, p. 85–124.

    Google Scholar 

  19. P. J. Roache, Computational Fluid Dynamics (Hermosa Publishers, Albuquerque, NM, 1976), Chap. II.

    Google Scholar 

  20. C. W. Hirt, A.A. Amsden, and J. L. Cook, J. Comput. Phys. 14, 227 (1974).

    Article  MATH  Google Scholar 

  21. J. U. Brackbill, J. S. Saltzman, J. Comput. Phys. 46, 342 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  22. A. J. Scannapieco, Los Alamos National Labroatory Report, LA-UR-82–2897 (1982).

    Google Scholar 

  23. R. D. Richtmyer, K. W. Morton, Difference Methods for Initial-Value Problems, 2nd ed. (Interscience Publishers, New York, 1967).

    MATH  Google Scholar 

  24. J. Von Neumann, R.D. Richtmyer, J. Appl. Phys. 21, 232 (1950).

    Article  MathSciNet  MATH  Google Scholar 

  25. W. D. Shultz, in Methods in Computational Physics, eds. B. Alder, S. Fernback, M. Rotenberg (Academic Press, New York, 1964), Vol. 3, p. 1-45.

    Google Scholar 

  26. G. T. Richards, Lawrence Livermore National Laboratory Report, UCRL-14284 (1965).

    Google Scholar 

  27. M. L. Wilkins, J. Comput. Phys. 36, 281 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Courant, K. O. Friedrich, H. Lewy, Math. Ann., 100, 32 (1928).

    Article  MathSciNet  MATH  Google Scholar 

  29. P. J. Roache, Computational Fluid Dynamics (Hermosa Publishers, Albuquerque, NM, 1976).

    Google Scholar 

  30. L. Spitzer, Jr. and R. H’arm, Phys. Rev. 89, 977 (1953).

    Google Scholar 

  31. C.P. Verdon, R. L. McCrory, R. L. Morse, G. R. Baker, D. I. Meiron, S. A. Orszag, Phys. Fluids 25, 1653 (1982).

    Google Scholar 

  32. D.S. Kershaw, J. Comput. Phys. 26, 43 (1978).

    Article  MathSciNet  MATH  Google Scholar 

  33. W. S. Dorn, D. D. McCracken, Numerical Methods with Fortran IV Case Studies (John Wiley and Sons, Inc., New York, 1972), Chap. 4.

    Google Scholar 

  34. R. C. Malone, R. L. McCrory, R. L. Morse, Phys. Rev. Lett. 34, 721 (1975).

    Article  Google Scholar 

  35. C. E. Max, C F. McKee, W. C Mead, Phys. Fluids 23, 1620 (1980).

    Article  Google Scholar 

  36. W. F. Huebner, A. L. Merts, N. H. Magee, Jr., M. F. Argo, Los Alamos National Laboratory Report, LA-6760-M (1977).

    Google Scholar 

  37. B. I. Bennett, J. D. Johnson, G. I. Kerley, G. T. Rood, Los Alamos National Laboratory Report, LA-7130 (1978).

    Google Scholar 

  38. P. Woodward, P. Colella, J. Comput. Phys. 54, 115 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  39. G. S. Fraley, E. J. Linnebur, R. J. Mason, and R. L. Morse, Phys. Fluids 17, 474 (1974).

    Article  Google Scholar 

  40. G. I. Taylor, Proc. R. Soc. London A, 201, 192 (1950).

    Article  MATH  Google Scholar 

  41. D. J. Lewis, Proc. R. Soc. London A, 202, 81 (1950).

    Article  Google Scholar 

  42. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford, England, 1961), Chap. 10.

    MATH  Google Scholar 

  43. J. D. Lindl (private communication).

    Google Scholar 

  44. S. Skupsky, K. Lee, J. Appl. Phys. 54, 3662 (1983).

    Article  Google Scholar 

  45. S. E. Bodner, J. Fusion Energy 1, 221 (1981).

    Article  Google Scholar 

  46. S. Skupsky, R. L. McCrory, C. P. Verdon, Bull. Am. Phys. Soc. 26, 1289 (1984).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York, Inc.

About this paper

Cite this paper

McCrory, R.L., Verdon, C.P. (1991). Inertial Confinement Fusion: Computer Simulation. In: Drobot, A.T. (eds) Computer Applications in Plasma Science and Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3092-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3092-2_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-97455-2

  • Online ISBN: 978-1-4612-3092-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics