Regulation of the Production of Pectinases and Other Extracellular Enzymes in the Soft-Rotting Erwinia spp.

  • A. K. Chatterjee
  • J. L. McEvoy
  • H. Murata
  • A. Collmer

Abstract

Members of the enterobacterial genus Erwinia cause diseases in a wide variety of plant hosts producing an array of symptoms including necrosis, wilt, gall, and soft-rot. In addition to bona fide plant pathogens, this genus houses commensals such as E. herbicola that largely sustain an epiphytic lifestyle, but can occasionally infect immunocompromised humans and animals. During the past decade Erwinia spp. have been extensively studied and several reviews (Chatterjee et al., 1990; Chatterjee et al., 1986; Collmer et al., 1986; Kotoujansky, 1987) discuss contemporary developments. For that reason and for the sake of brevity in this report we focus primarily on our recent work on the regulation of the production of pectinases and other extracellular enzymes in the soft-rotting bacteria: E. chrysanthemi (Echr) strain EC16 and E. carotovora subsp. carotovora (Ecc) strain Ecc71. The evidence presented here allows the following general conclusions: (1) The pel (pectate lyase) genes of EC16 are regulated differently. (2) Extracellular enzyme production in Ecc71 is subject to a common control. (3) Pectin lyase production in Ecc71 in response to DNA-damaging agents requires a transcriptional activator.

Keywords

Glycerol Adenosine Polypeptide Pseudomonas Gall 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andro, T., et al., 1984, Mutants of Erwinia chrysanthemi defective in secretion of pectinase and cellulase, J. Bacteriol. 160:1199–1203.PubMedCentralPubMedGoogle Scholar
  2. Barras, F., Thurn, K.K., and Chatterjee, A. K. 1987, Resolution of four pectate lyase structural genes of Erwinia chrysanthemi (EC16) and characterization of the enzymes produced in Escherichia coli, Mol. Gen. Genet. 209:319–325.PubMedCrossRefGoogle Scholar
  3. Beaulieu, C., and Van Gijsegem, F., 1990, Identification of plant-inducible genes in Erwinia chrysanthemi 3937, J. Bacteriol. 172:1569–1575.PubMedCentralPubMedGoogle Scholar
  4. Boccara, M., and Chatain, V., 1989, Regulation and role in pathogenicity of Erwinia chrysanthemi 3937 pectin methylesterase, J. Bacteriol. 171:4085–4087.PubMedCentralPubMedGoogle Scholar
  5. Boccara, M., et al., 1988, The role of individual pectate lyases of Erwinia chrysanthemi strain 3937 in pathogenicity on saintpaulia plants, Physiol. Mol. Plant Pathol. 33:95–104.CrossRefGoogle Scholar
  6. Castilho, B.A., Olfson, P. and Casadaban, M.J., 1984, Plasmid insertion mutagenesis and lac gene fusion with mini-Mu bacteriophage transposons, J. Bacteriol. 158:488–495.PubMedCentralPubMedGoogle Scholar
  7. Chatterjee, A.K., Thurn, K.K. and Tyrell, DJ., 1985, Isolation and characterization of Tn5 insertion mutants of Erwinia chrysanthemi that are deficient in polygalacturonate catabolic enzymes oligogalacturonate lyase and 3-deoxy-D-glycero-2,5-hexodiulosonate dehydrogenase, J. Bacteriol. 162:708–714.PubMedCentralPubMedGoogle Scholar
  8. Chatterjee, A.K., and Vidaver, A.K., 1986, Genetics of pathogenicity factors: application to phytopathogenic bacteria. In Advances in Plant Pathology, Ingram, D.S. and Williams, P.H., eds. vol 4, pp. 1–224 Academic Press, London.Google Scholar
  9. Chatterjee, A.K., et al., 1987, Molecular genetics of soft-rot Erwinia and their plant paghogenic determinants. In Biotechnology in Agriculture, Natesh, S., Chopra, V.L., and Ramachandra, S., eds., Oxford IBH, New Delhi, pp. 261–273.Google Scholar
  10. Chatterjee, A.K., et al., 1990, Molecular genetics of regulation and export of Erwinia pectinases. In Proceedings of the International Symposium on Biochemistry and Molecular Biology of Plant Pathogen Interactions. Phytochemical Society of Europe (in press).Google Scholar
  11. Collmer, A., and Keen, N.T., 1986, The role of pectic enzymes in plant pathogenesis. Annu. Rev. Phytopathol. 24:383–409.CrossRefGoogle Scholar
  12. Collmer, A., et al., 1988, Construction and characterization of Erwinia chrysanthemi mutants containing mutations in genes encoding extracellular pectic enzymes. In Molecular Genetics of Plant-Microbe Interactions, Palacios, R., and Verma, D.P.S. eds., pp. 356–361. APS Press, St. Paul.Google Scholar
  13. Condemine, G., and Robert-Baudouy, J., 1987, Tn5 insertion in kdgR, a regulatory gene of the polygalacturonate pathway in Erwinia chrysanthemi, FEMS Microbiol. Lett. 42:39–46.CrossRefGoogle Scholar
  14. Ditta, G., et al., 1985, Plasmids related to the broad host range vector, pRK290, useful for gene cloning and for monitoring gene expression, Plasmid 13:149–153.PubMedCrossRefGoogle Scholar
  15. Hinton, J.C.D., and Salmond, G.P.C., 1987, Use of TnphoA to enrich for extracellular enzyme mutants of Erwinia carotovora, subspecies carotovora, Mol. Microbiol. 1:381–386.PubMedCrossRefGoogle Scholar
  16. Hinton, J.C.D., et al., 1989, Extracellular and periplasmic isoenzymes of pectate lyase from Erwinia carotovora subspecies carotovora belong to different gene families, Mol. Microbiol. 3:1785–1795.PubMedCrossRefGoogle Scholar
  17. Hugouvieux-Cotte-Pattat, N., and Robert-Baudouy, J. 1987, Hexouronate catabolism in Erwinia chrysanthemi, J. Bacteriol. 169:1223–1231.PubMedCentralPubMedGoogle Scholar
  18. Hugouvieux-Cotte-Pattat, N., and Robert-Baudouy, J., 1989, Isolation of Erwinia chrysanthemi mutants altered in pectinolytic enzyme production, Mol. Microbiol. 3:1587–1597.PubMedCrossRefGoogle Scholar
  19. Itoh, Y., Izaski, K., and Takahashi, H., 1980, Simultaneous synthesis of pectin lyase and cartovoricin induced by mitomycin C, nalidixic acid or ultraviolet light irradiation in Erwinia carotovora, Agric. Biol. Chem. 44:1135–1140.CrossRefGoogle Scholar
  20. Itoh, Y., et al., 1982, Enzymological and immunological properties of pectin lyases from bacteriocinogenic strains of Erwinia carotovora, Agric. Biol. Chem. 46:199–205.CrossRefGoogle Scholar
  21. Ji, J., Hugouvieux-Cotte-Pattat, N., and Robert-Baudouy, J., 1987, Use of Mu-lac insertions to study the secretion of pectate lyases by Erwinia chrysanthemi, J. Gen. Microbiol. 133:798–802.Google Scholar
  22. Kamimiya, S., Izaki, K., and Takahashi, H., 1972, A new pectolytic enzyme in Erwinia aroideae formed in the presence of nalidixic acid, Agric. Biol. Chem. 36:2367–2372.CrossRefGoogle Scholar
  23. Keen, N.T., and Tamaki, S., 1986, Structure of two pectate lyase genes from Erwinia clirysanthemi EC 16 and their high-level expression in Escherichia coli, J. Bacteriol. 168:595–606.PubMedCentralPubMedGoogle Scholar
  24. Keen, N.T., et al., 1984, Molecular cloning of pectate lyase genes from Erwinia clirysanthemi and their expression in Escherichia coli, J. Bacteriol. 159:825–831.PubMedCentralPubMedGoogle Scholar
  25. Kotoujansky, A., 1987, Molecular genetics of pathogenesis by soft-rot Erwinia, Annu. Rev. Phytopathol. 25:405–430.CrossRefGoogle Scholar
  26. Lei, S., et al., 1987, Characterization of the Erwinia carotovora pelB gene and its product pectate lyase, J. Bacteriol. 169:4379–4383.PubMedCentralPubMedGoogle Scholar
  27. McEvoy, J.L., Murata, H., and Chatterjee, A.K., 1990, Molecular cloning and characterization of a gene for pectin lyase of Erwinia carotovora subsp. carotovora that responds to DNA damaging agents, J. Bacteriol. 112: 3284–3289.Google Scholar
  28. McEvoy, J.L., Thurn, K.K., and Chatterjee, A.K., 1987, Expression of the E. coli lexA + gene in Erwinia carotovora subsp. carotovora and its effect on production of pectin lyase and carotovoricin, FEMS Microbiol. Lett. 42:205–208.Google Scholar
  29. Mount, M.S., et al., 1979, Regulation of endopolygalacturonate transeliminase in an adenosine 3′,5′-cyclic monophosphate-deficient mutant of Erwinia carotovora, Phytopathology 69:117–120.CrossRefGoogle Scholar
  30. Murata, H., et al., 1990, Characterization of transposon insertion Out mutants of Erwinia carotovora subsp. carotovora defective in enzyme export and of a DNA segment that complements out mutations in E. carotovora subsp. carotovora, E. carotovora subsp. atroseptica and E. chrysanthemi, J. Bacteriol. 172:2970–2978.PubMedCentralPubMedGoogle Scholar
  31. Pastan, I., and Adhya, S., 1976, Cyclic adenosine 5′-monophosphate in Escherichia coli, Bacteriological. Rev. 40:527–551.Google Scholar
  32. Payne, J.H., et al., 1987, Multiplication and virulence in plant tissues of Escherichia coli clones producing pectate lyase isozymes PLb and PLe at high levels and of an Erwinia clirysanthemi mutant deficient in PLe, Appl. Environ. Microbiol. 53:2315–2320.PubMedCentralPubMedGoogle Scholar
  33. Reverchon, S., and Robert-Baudouy, J., 1987, Regulation of expression of pectate lyase genes pelA, pelD, and pelE in Erwinia chrysanthemi, J. Bacteriol. 169:2417–2423.PubMedCentralPubMedGoogle Scholar
  34. Reverchon, S., et al., 1989, Nucleotide sequence of the Erwinia chrysanthemi ogl and pelE genes negatively regulated by kdgR gene product, Gene 85:125–134.PubMedCrossRefGoogle Scholar
  35. Ried, J.L., and Collmer, A., 1988, Construction and characterization of an Erwinia chrysanthemi mutant with directed deletions in all of the pectate lyase structural genes, Mol. Plant-Microbe Interact. 1:32–38.CrossRefGoogle Scholar
  36. Roeder, D.L., and Collmer, A., 1985, Marker-exchange mutagenesis of a pectate lyase isozyme gene in Erwinia chrysanthemi, J. Bacteriol. 164:51–56.PubMedCentralPubMedGoogle Scholar
  37. Roeder, D.L., and Collmer, A., 1987, Marker-exchange mutagenesis of the pelB gene in Erwinia chrysanihemi CUCPB 1237. In Plant Pathogenic Bacteria Civerolo, E.L., Collmer, A., Davis, R.E. and Gillaspie, A.G., (eds.) pp. 218–223, Martinus Nijhoff Publishers, Dordecht.CrossRefGoogle Scholar
  38. Schoedel, C., and Collmer, A., 1986, Evidence of homology between the pectate lyase-encoding pelB and pelC genes in Erwinia chrysanihemi, J. Bacteriol. 167:117–123.PubMedCentralPubMedGoogle Scholar
  39. Tamaki, S.J., et al., 1988, Structure and organization of the pel genes from Erwinia chrysanthemi EC16, J. Bacteriol. 170:3468–3478.PubMedCentralPubMedGoogle Scholar
  40. Thurn, K.K., and Chatterjee, A.K., 1985, Single-site chromosomal Tn5 insertions affect the export of pectolytic and cellulolytic enzymes in Erwinia chrysanihemi EC16, Appl. Environ. Microbiol. 50:894–898.PubMedCentralPubMedGoogle Scholar
  41. Tomizawa, H., and Takahashi, H., 1971, Stimulation of pectolytic enzyme formation of Erwinia aroideae by nalidixic acid, mitomycin C and bleomycin, Agric. Biol. Chem. 35:191–200.CrossRefGoogle Scholar
  42. Trollinger, D., et al., 1989, Cloning and characterization of a pectate lyase gene from Erwinia carotovora EC153, Mol. Plant-Microbe Interact. 2:17–25.PubMedCrossRefGoogle Scholar
  43. Tsuyumu, S., 1977, Inducer of pectic acid lyase in Erwinia carotovora, Nature 269:237–38.CrossRefGoogle Scholar
  44. Tsuyumu, S., 1979, “Self-catabolite repression” of pectate lyase in Erwinia carotovora, J. Bacteriol. 137:1035–1036.PubMedCentralPubMedGoogle Scholar
  45. Tsuyumu, S., and Chatterjee, A.K., 1984, Pectin lyase production in Erwinia chrysanthemi and other soft-rot Erwinia species, Physiol. Plant Pathol. 24:291–302.CrossRefGoogle Scholar
  46. Tsuyumu, S., et al., 1985, Presence of DNA damaging agents in plants as the possible inducers of pectin lyase of soft-rot Erwinia, Annu. Phytopathol. Soc. Japan 51:294–302.CrossRefGoogle Scholar
  47. Walker, G.C., 1987, The SOS response of Escherichia coli, p. 1346–1357. In Escherichia coli and Salmonella typhimurium: cellular and molecular biology Neidhardt, F.C., Ingraham, J.L., Low, K.B., Magasanik, B., et al. (eds.), vol. 2. pp. 1346–1357 American Society for Microbiology, Washington, D.C.Google Scholar
  48. Willis, J.W., Engwall, J.K., and Chatterjee, A.K., 1987, Cloning of genes for Erwinia carotovora subsp. carotovora pectolytic enzymes and further characterization of the polygalacturonases, Phytopathology 77:1199–1205.CrossRefGoogle Scholar
  49. Zink, R.T., and Chatterjee, A.K., 1985, Cloning and expression in Escherichia coli of pectinase genes of Erwinia carotovora subsp. carotovora, Appl. Environ. Microbiol. 49:714–717.PubMedCentralPubMedGoogle Scholar
  50. Zink, R.T., et al., 1985, recA function of Erwinia carotovora subspecies carotovora is required in the induction of pectin lyase and carotovoricin by DNA-damaging agents, J. Bacteriol. 164:390–396.PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • A. K. Chatterjee
  • J. L. McEvoy
  • H. Murata
  • A. Collmer

There are no affiliations available

Personalised recommendations