Skip to main content

Ecological Consequences of Heterogeneity of Consumable Resources

  • Chapter
Book cover Ecological Heterogeneity

Part of the book series: Ecological Studies ((ECOLSTUD,volume 86))

Abstract

The business of consuming resources is of paramount importance to the biology of all species. Whether consuming inorganic resources, e.g., photons or sulfur, or consuming organic resources, e.g., other organisms or their products, virtually every aspect of the biology of a species is affected by the quantity, quality, and availability of consumable resources. In the simplest systems—such as a uniformly distributed population under homogeneous environmental conditions consuming resources that renew at constant rates (as in a chemostat)—population growth is generally a straightforward outcome of consumption and the metabolic processes that govern the production of new individuals. What happens to populations, however, when systems are complex? That is, what happens when resources vary in time or space or when resources are consumed by other species in the community? We address this question by examining the ecological consequences of heterogeneity of consumable resources in multi-species systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams PA (1980) Consumer functional response and competition in consumer-resource systems. Theor Pop Biol 17: 80–102

    Article  CAS  Google Scholar 

  • Abrams PA (1988) Resource predictability-consumer species diversity: simple models of competition in spatially heterogeneous environments. Ecology 69: 1418–1433

    Article  Google Scholar 

  • Armstrong RA, McGehee R (1976a) Coexistence of species competing for shared resources. Theor Pop Biol 9: 317–328

    Article  CAS  Google Scholar 

  • Armstrong RA, McGehee R (1976b) Coexistence of two competitors on one resource. J Theor Biol 56: 499–502

    Article  PubMed  CAS  Google Scholar 

  • Armstrong RA, McGehee R (1980) Competitive exclusion. Am Nat 115: 151–170

    Article  Google Scholar 

  • Atkinson D, Shorrocks B (1981) Competition on a divided and ephemeral resource: a simulation model. J Anim Ecol 50: 461–471

    Article  Google Scholar 

  • Auerbach MJ, Strong DR Jr (1981) Nutritional ecology of Heliconia herbivores: experiments with plant fertilization and alternate hosts. Ecol Monogr 51: 63–83

    Article  Google Scholar 

  • Ayala FJ, Gilpin MJ, Ehrenfeld EG (1973) Competition between species and theoretical models and experimental tests. Theor Pop Biol 4: 331–356

    Article  CAS  Google Scholar 

  • Batzli GO (1983) Responses of Arctic rodent populations to nutritional factors. Oikos 40: 396–406

    Article  Google Scholar 

  • Batzli GO, White RG, MacLean SF, Pitelka FA, Collier BD (1980) The herbivore based trophic system. In Brown J, Miller PC, Tieszen LL, FL Bunnell (eds) An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska. Dowden, Hutchinson & Ross, Stroudsburg

    Google Scholar 

  • Batzli GO, Jung HG, Guntenspergen G (1981) Nutritional ecology of microtine rodents: linear-forage rate curves for brown lemmings. Oikos 37: 112–116

    Article  Google Scholar 

  • Bazzaz FA, Carlson RW (1984) The response of plants to elevated CO2. I. Competition among an assemblage of annuals at different levels of soil moisture. Oecologia 62: 196–198

    Google Scholar 

  • Bazzaz FA, Garbutt K (1988) The response of annuals in competitive neighborhoods: effects of elevated CO2. Ecology 69: 937–946

    Article  Google Scholar 

  • Beaver RA (1972) Ecological studies on Diptera breeding in dead snails. I. Biology of the species found in Cepea nemoralis (L.). Entomologist 105: 41–52

    Google Scholar 

  • Beaver RA (1977) Non-equilibrium “island” communities: Diptera breeding in dead snails. J Anim Ecol 46: 783–798

    Article  Google Scholar 

  • Begon M, Harper JL, Townsend CR (1986) Ecology: Individuals, Populations, and Communities. Sinauer Associates, Sunderland

    Google Scholar 

  • Bender EA, Case TJ, Gilpin ME (1984) Perturbation experiments in community ecology: theory and practice. Ecology 65: 1–13

    Article  Google Scholar 

  • Boag PT, Grant PR (1984) Darwin’s Finches (Geospiza) on Isla Daphne Major, Galapagos: breeding and feeding ecology in a climatically variable environment. Ecol Monogr 54: 463–489

    Article  Google Scholar 

  • Brock TD (1987) The study of microorganisms in situ: progress and problems. In Fletcher MT, Gray RG, Jones JG (eds) Ecology of Microbial Communities. Cambridge University Press, New York

    Google Scholar 

  • Brooks JL, Dodson SI (1965) Predation, body size and composition of the plankton. Science 150: 28–35

    Article  PubMed  CAS  Google Scholar 

  • Butler GJ, Waltman P (1981) Bifurcation from a limit cycle in a two predator-one prey ecosystem modeled on a chemostat. J Math Biol 12: 295–310

    Article  Google Scholar 

  • Cairns J Jr, Dickson KL, Yongue WH Jr (1971) The consequences of nonselective periodic removal of portions of fresh water protozoan communities. Trans Am Microsc Soc 70: 71–80

    Article  Google Scholar 

  • Caswell H (1978) Predator-mediated coexistence: a nonequilibrium model. Am Nat 112: 127–154

    Article  Google Scholar 

  • Chesson PL (1986) Environmental variation and the coexistence of species. In Diamond J, Case TJ (eds) Community Ecology. Harper & Row, New York, pp 240–256

    Google Scholar 

  • Chesson PL, Case TJ (1986) Nonequilibrium community theories: chance, variability, history, and coexistence. In Diamond J, Case TJ (eds) Community Ecology. Harper & Row, New York, pp 229–239

    Google Scholar 

  • Cohen JE (1970) A Markov contingency table model for replicated Lotka-Voltera systems near equilibrium. Am Nat 104: 547–559

    Article  Google Scholar 

  • Colwell RK (1974) Predictability, constancy, and contingency of periodic phenomena. Ecology 55: 1148–1153

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain-forests and coral reefs. Science 199: 1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Crowell KL, Pimm SL (1976) Competition and niche shifts of mice introduced onto islands. Oikos 27: 251–258

    Article  Google Scholar 

  • Cushing JM (1980) Two species competition in a periodic environment. J Math Biol 10: 485–400

    Article  Google Scholar 

  • DeMott WR (1983) Seasonal succession in a natural Daphnia assemblage. Ecol Monogr 53: 321–340

    Article  Google Scholar 

  • DeMott WR, Kerfoot WC (1982) Competition among cladocerans: nature of the interaction between Bosmina and Daphnia. Ecology 63: 1949–1966

    Article  Google Scholar 

  • Digby PGN, Kempton RA (1987) Multivariate Analysis of Ecological Communities. Chapman & Hall, London

    Google Scholar 

  • Eissenstat DM, Caldwell MM (1988) Seasonal timing of root growth in favorable microsites. Ecology 69: 870–873

    Article  Google Scholar 

  • Feeny PP (1976) Plant apparency and chemical defense. In Wallace WJ, RL Mansell (eds) Recent Advances in Phytochemistry. Vol 10. Biochemical Interactions Between Plants and Insects. Plenum Press, New York, pp 1–40

    Google Scholar 

  • Fox LR, Macauley BJ (1977) Insect grazing in Eucalyptus in response to variation in leaf tannins and nitrogen. Oecologia 29: 145–162

    Google Scholar 

  • Fredrickson AG, Stephanopoulos G (1981) Microbial competition. Science 213: 972–979

    Article  PubMed  CAS  Google Scholar 

  • Giesel, JT (1976) Reproductive strategies as adaptations to life in temporally heterogeneous environments. Annu Rev Ecol Syst 7: 57–79

    Article  Google Scholar 

  • Gotelli NJ, Simberloff D (1988) The distribution and abundance of tall grass prairie plants: a test of the core-satellite hypothesis. Am Nat 130: 18–35

    Article  Google Scholar 

  • Gottschal JC, Devries SC, JG Kuenen (1979) Competition between the facultatively chemolithotrophic Thiobacillus A2, an obligately chemolithotrophic Thiobacillus and a heterotrophic Spirillum for inorganic and organic substrates. Arch Microbiol 121: 241–249

    Article  CAS  Google Scholar 

  • Grant PR (1986) Ecology and Evolution of Darwin’s Finches. Princeton University Press, Princeton

    Google Scholar 

  • Grant PR, Boag PT (1980) Rainfall on the Galapagos and the demography of Darwin’s finches. Auk 97: 227–244

    Google Scholar 

  • Grenney WJ, Bella DA, Curl HC Jr (1973) A theoretical approach to interspecific competition in phytoplankton communities. Am Nat 107: 405–425

    Article  CAS  Google Scholar 

  • Grover JP (1988) Dynamics of competition in a variable environment: experiments with two diatom species. Ecology 69: 408–417

    Article  Google Scholar 

  • Hallet JG, Pimm SL (1979) Direct estimation of competition. Am Nat 113: 593–600

    Article  Google Scholar 

  • Hanski I (1981) Coexistence of competitors in patchy environment with and without predation. Oikos 37: 306–312

    Article  Google Scholar 

  • Hanski I (1982a) Communities of bumblebees: testing the core-satellite species hypothesis. Ann Zool Fenn 19: 65–73

    Google Scholar 

  • Hanski I (1982b) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38: 210–221

    Article  Google Scholar 

  • Hanski I, Kuusela S (1977) An experiment on competition and diversity in the carrion fly community. Ann Entomol Fenn 43: 108–115

    Google Scholar 

  • Harder W, Dijkhuizen L (1982) Strategies of mixed substrate utilization in microorganisms. Philos Trans Ry Soc Lond [Biol] 297: 459–480

    Article  CAS  Google Scholar 

  • Hardin G (1960) The competitive exclusion principle. Science 131: 1292–1297

    Article  PubMed  CAS  Google Scholar 

  • Hartnett DC, Bazzaz FA (1983) Physiological interaction among intraclonal ramets in Solidago canadensis. Ecology 64: 799–797

    Article  Google Scholar 

  • Holbrook SJ, Schmitt RJ (1988) The combined effects of predation risk and food reward on patch selection. Ecology 69: 125–134

    Article  Google Scholar 

  • Horn HS, MacArthur RH (1972) Competition among fugitive species in a harlequin environment. Ecology 53: 749–752

    Article  Google Scholar 

  • Hrbacek J (1962) Species composition and the amount of zooplankton in relation to fish stock. Rozpravy Cesk Akad Ved, Rada Matemat Prirodnich Ved 72: 1–116

    Google Scholar 

  • Hsu SB (1981) On a resource based ecological competition model with interference. J Math Biol 12: 45–52

    Article  Google Scholar 

  • Hsu SB, Hubbell SP (1979) Two predators competing for two prey species and analysis of MacArthur’s model. Math Biosci 47: 143–171

    Article  Google Scholar 

  • Hsu SB, Hubbell SP, Waltman P (1978) A contribution to the theory of competing predators. Ecol Monogr 48: 337–349

    Article  Google Scholar 

  • Hurd LE, LL Wolf (1974) Stability in relation to nutrient enrichment in arthropod consumers of old-field successional systems. Ecol Monogr 44: 465–482

    Article  Google Scholar 

  • Hurd LE, Mellinger MV, Wolf LL, McNaughton SJ (1971) Stability and diversity at three trophic levels in terrestrial ecosystems. Science 173: 1134–1136

    Article  PubMed  CAS  Google Scholar 

  • Hurlbert SH (1984) Pseudoreplication and the design of ecological field experiments. Ecol Monogr 54: 187–211

    Article  Google Scholar 

  • Hutchinson GE (1961) The paradox of the plankton. Am Nat 95: 137–145

    Article  Google Scholar 

  • Inouye RS, Tilman D (1988) Convergence and divergence of old-field plant communities along experimental nitrogen gradients. Ecology 69: 995–1004

    Article  Google Scholar 

  • Jackson KM, Berger J (1984) Survival of ciliate protozoa under starvation conditions and at low bacterial levels. Microb Ecol 10: 47–59

    Article  Google Scholar 

  • Kerfoot WC, Sih A (eds) (1986) Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover

    Google Scholar 

  • Kerfoot WC, DeMott WR, Levitan C (1985) Non-linearities in competition interactions: component variables or system response? Ecology 66: 959–965

    Article  Google Scholar 

  • Koch AL (1974a) Coexistence resulting from an alternation of density dependent and density independent growth. J Theor Biol 44: 373–386

    Article  PubMed  CAS  Google Scholar 

  • Koch AL (1974b) Competitive coexistence of two predators utilizing the same prey under constant environmental conditions. J Theor Biol 44: 387–395

    Article  PubMed  CAS  Google Scholar 

  • Kuusela S, Hanski I (1982) The structure of carrion fly communities: the size and the type of carrion. Holarct Ecol 5: 337–348

    Google Scholar 

  • Leon J, Tumpson D (1975) Competition between two species for complementary or substitutable resources. J Theor Biol 50: 185–201

    Article  PubMed  CAS  Google Scholar 

  • Levin SA (1970) Community equilibria and stability, and an extension of the competitive exclusion principle. Am Nat 104: 413–423

    Article  Google Scholar 

  • Levin SA (1974) Dispersion and population interaction. Am Nat 108: 207–228

    Article  Google Scholar 

  • Levin SA (1976) Population dynamic models in heterogenous environments. Annu Rev Ecol Syst 7: 287–310

    Article  Google Scholar 

  • Levin SA (1978) Pattern formation in ecological communities. In Steele JH (ed) Spatial Pattern in Plankton Communities. Plenum Press, New York, pp 433–467

    Google Scholar 

  • Levine SH (1976) Competitive interactions in ecosystems. Am Nat 110: 903–910

    Article  Google Scholar 

  • Levins R (1968) Evolution in Changing Environments. Princeton University Press, Princeton

    Google Scholar 

  • Levins R (1979) Coexistence in a variable environment. Am Nat 114: 765–783

    Article  Google Scholar 

  • Levins R, Culver D (1971) Regional coexistence of species and competition between rare species. Proc Natl Acad Sci USA 68: 246–248

    Article  Google Scholar 

  • Lynch M (1978) Complex interactions between natural coexploiters—Daphnia and Ceriodaphnia. Ecology 59: 552–564

    Article  Google Scholar 

  • MacArthur RH (1972) Geographical Ecology. Princeton University Press, Princeton

    Google Scholar 

  • MacArthur RH, Levins R (1967) Competition, habitat selection, and character displacement in patchy environment. Proc Natl Acad Sci USA 51: 1207–1210

    Article  Google Scholar 

  • Mattson WJ Jr (1980) Herbivory in relation to plant nitrogen content. Annu Rev Ecol Sys 11: 119–162

    Article  Google Scholar 

  • Morin PJ (1986) Salamander predation, prey facilitation, and seasonal succession in microcrustacean communities. In Kerfoot CW, Sih A (eds) Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, pp 174–187

    Google Scholar 

  • Morrison DF (1976) Multivariate Statistical Methods. McGraw-Hill, New York

    Google Scholar 

  • Naeem S (1988a) Ecological consequences of temporal heterogeneity on aquatic communities of microbes and metazoa. PhD dissertation, University of California, Berkeley

    Google Scholar 

  • Naeem S (1988b) Resource heterogeneity fosters the coexistence of a mite and a midge in a pitcher plant. Ecol Monogr 58: 215–227

    Article  Google Scholar 

  • Neill WE (1981) Importance of Chaoborus predation upon the structure and dynamics of a crustacean Zooplankton community. Oecologia 48: 164–177

    Article  Google Scholar 

  • Neill WE (1984) Regulation of rotifer densities by crustacean Zooplankton in an oligotrophic montane lake in British Columbia. Oecologia 61: 175–181

    Article  Google Scholar 

  • Neill WE, Peacock A (1980) Breaking the bottleneck: invertebrate predators and nutrients in oligotrophic lakes. In Kerfoot WC (ed) Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, pp 715–724

    Google Scholar 

  • Onuf CP, Teal JM, Valiela I (1977) Interactions of nutrients, plant growth and herbivory in a mangrove ecosystem. Ecology 58: 514–526

    Article  Google Scholar 

  • Peacock A (1982) Responses of Cyclops bicuspidatus thomasi to alterations in food and predators. Can J Zool 60: 1446–1462

    Article  Google Scholar 

  • Pickett STA, White PS (eds) (1985) The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, Orlando

    Google Scholar 

  • Pimm SL, Pimm JW (1982) Resource use, competition, and resource availability in Hawaiian honey creepers. Ecology 63: 1468–1480

    Article  Google Scholar 

  • Powell T, Richerson PJ (1985) Temporal variation, spatial heterogeneity, and competition for resources in plankton systems: a theoretical model. Am Nat 125: 431–464

    Article  Google Scholar 

  • Price PW, Boutan CE, Gross P, McPheron BA, Thomson JN, Weins AE (1980) Interactions among three trophic levels: influence of plants on interactions between insect herbivores and natural enemies. Annu Rev Ecol Sys 11: 41–65

    Article  Google Scholar 

  • Price TD (1985) Reproductive responses to varying food supply in a population of Darwin’s finches: clutch size, growth rates and hatching synchrony. Oecologia 66: 411–416

    Article  Google Scholar 

  • Rashit E, Bazin M (1987) Environmental fluctuations, productivity, and species diversity: an experimental study. Microb Ecol 14: 101–112

    Article  Google Scholar 

  • Rhoades DF, Cates RG (1976) Toward a general theory of plant antiherbivore chemistry. In Wallace WJ, Mansell RL (eds) Recent Advances in Phytochemistry. Vol 10. Biochemical Interactions Between Plants and Insects. Plenum Press, New York, pp 168–213

    Google Scholar 

  • Richerson P, Armstrong R, Goldman CR (1970) Contemporaneous disequilibrium, a new hypothesis to explain the paradox of the plankton. Proc Natl Acad Sci USA 67: 1710–1714

    Article  PubMed  CAS  Google Scholar 

  • Rogers AH, Zilm PS, Gully NJ (1987) Influence of argenine on the coexistence of Streptococcus mutans and S. milleri in glucose-limited mixed continuous culture. Microb Ecol 14: 193–202

    Article  CAS  Google Scholar 

  • Rosenzweig ML, Abramsky Z, Brand S (1984) Estimating species interactions in heterogeneous environments. Oikos 43: 329–340

    Article  Google Scholar 

  • Rosenzweig ML, Abramsky Z, Kotler B, Mitchell W (1985) Can interaction coefficients be determined from census data? Oecologia 66: 194–198

    Google Scholar 

  • Sale PF (1977) Maintenance of high diversity in coral reef fishes. Am Nat 111: 337–359

    Article  Google Scholar 

  • Salzman AG (1985) Habitat selection in a clonal plant. Science 228: 603–604

    Article  PubMed  CAS  Google Scholar 

  • Salzman AG, MA Parker (1985) Neighbors ameliorate local salinity stress for a rhizomatous plant in a heterogeneous environment. Oecologia 65: 273–277

    Article  Google Scholar 

  • Schluter D (1982) Distributions of Galapagos ground finches along an altitudinal gradient: the importance of food supply. Ecology 63: 1504–1517

    Article  Google Scholar 

  • Schmitt RJ, Holbrook SJ (1986) Seasonally fluctuating resources and temporal variability of interspecific competition. Oecologia 69: 1–11

    Article  Google Scholar 

  • Schoener TW (1974) Competition and the form of habitat shift. Theor Pop Biol 6: 265–307

    Article  CAS  Google Scholar 

  • Schultz AM (1964) The nutrient recovery hypothesis for Arctic microtine cycles. II. Ecosystem variables in relation to Arctic microtine cycles. In Crisp DJ (ed) Grazing in Terrestrial and Marine Environments. Blackwell, Oxford, pp 57–68

    Google Scholar 

  • Schultz AM (1969) A study of an ecosystem: the arctic tundra. In van Dyne GM (ed) The Ecosystem Concept in Natural Resource Management. Academic Press, Orlando, pp 77–93

    Google Scholar 

  • Shorrocks B, Atkinson W, Charlesworth P (1979) Competition on a divided and ephemeral resource. J Anim Ecol 48: 899–908

    Article  Google Scholar 

  • Slatkin M (1974) Competition and regional coexistence. Ecology 55: 128–134

    Article  Google Scholar 

  • Smith DW, Cooper SD, Sarnelle O (1988) Curvilinear density dependence and the design of field experiments on Zooplankton competition. Ecology 69: 868–870

    Article  Google Scholar 

  • Smouse PE (1980) Mathematical models for continuous culture growth dynamics of mixed populations subsisting on a heterogenous resource base. I. Simple competition. Theor Pop Biol 17: 16–36

    Article  CAS  Google Scholar 

  • Steele JH (ed) (1978) Spatial Pattern in Plankton Communities. Plenum Press, New York

    Google Scholar 

  • Strauss SY (1987) Direct and indirect effects of host-plant fertilization on insect community. Ecology 68: 670–1678

    Article  Google Scholar 

  • Strong DR Jr (1983) Natural variability and the manifold mechanisms of ecological communities. Am Nat 122: 636–660

    Article  Google Scholar 

  • Stross RG, Pemrick SM (1974) Nutrient uptake kinetics in phytoplankton: a basis for niche separation. J Phycol 10: 164–169

    CAS  Google Scholar 

  • Taylor PA, Williams PJLeB (1975) The critical studies on the coexistence of competing species under controlled flow conditions. Can J Microb 21: 90–98

    Article  CAS  Google Scholar 

  • Tilman D (1980) Resources: a graphical-mechanistic approach to competition and predation. Am Nat 116: 362–393

    Article  Google Scholar 

  • Tilman D (1982) Resource Competition and Community Structure. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D (1987) The importance of the mechanisms of interspecific competition. Am Nat 129: 769–774

    Article  Google Scholar 

  • Tilman D (1988) Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton University Press, Princeton

    Google Scholar 

  • Tilman D, Kilham SS, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Annu Rev Ecol Syst 13: 349–372

    Article  Google Scholar 

  • Turpin DH, Harrison PJ (1979) Limiting nutrient patchiness and its role in phytoplankton ecology. J Exp Mar Biol Ecol 39: 151–166

    Article  CAS  Google Scholar 

  • Valiela I, Teal JM, Sass WJ (1975) Production and dynamics of salt marsh vegetation and the effects of experimental treatment with sewage sludge: biomass, production and species composition. J Appl Ecol 12: 973–982

    Article  CAS  Google Scholar 

  • Vance RR (1984) Interference competition and the coexistence of two competitors on a single limiting resource. Ecology 65: 1349–1357

    Article  Google Scholar 

  • Vandermeer JH (1970) The community matrix and the number of species in a community. Am Nat 104: 73–83

    Article  Google Scholar 

  • Vanni MJ (1987) Effects of food availability and fish predation on a zooplankton community. Ecol Monogr 57: 61–88

    Article  Google Scholar 

  • Vegter JJ (1987) Phenology and seasonal resource partitioning in forest floor Collembola. Oikos 48: 175–185

    Article  Google Scholar 

  • Veldkamp H (1977) Ecological studies with the chemostat. Adv Microbiol Ecol 1: 59–94

    CAS  Google Scholar 

  • Veldkamp H, Van Gemerden H, Harder W, Laanbroek HJ (1984) Competition among bacteria: an overview. In Klug MJ, Reddy CA (eds) Proceeding of the Third International Symposium on Microbial Ecology. American Society Micro-biologists, Washington, DC, pp 279–290

    Google Scholar 

  • Vince SW, Valiela I, Teal JM (1981) An experimental study of the structure of herbivorous insect communities in a salt marsh. Ecology 62: 1662–1678

    Article  Google Scholar 

  • Wiens JA (1976) Population responses to patchy environments. Annu Rev Ecol Syst 7: 81–120

    Article  Google Scholar 

  • Wiens JA (1977) On competition in variable environments. Am Sci 65: 590–597

    Google Scholar 

  • Winer BJ (1971) Statistical Principles in Experimental Design. McGraw-Hill, New York

    Google Scholar 

  • Zangrel AR, Bazzaz FA (1984) The response of plants to elevated C02. II. Competitive interactions between annual plants under varying light. Oecologia 62: 412–417

    Google Scholar 

  • Zaret TM (1980) Predation and Freshwater Communities. Yale University Press, New Haven

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Naeem, S., Colwell, R.K. (1991). Ecological Consequences of Heterogeneity of Consumable Resources. In: Kolasa, J., Pickett, S.T.A. (eds) Ecological Heterogeneity. Ecological Studies, vol 86. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3062-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3062-5_12

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7781-1

  • Online ISBN: 978-1-4612-3062-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics