Skip to main content

Ecological Genetics and Changes in Atmospheric Chemistry: The Application of Knowledge

  • Chapter
Ecological Genetics and Air Pollution

Abstract

Ample evidence indicates that plants vary markedly in their responses to air pollutants. Furthermore, it is known that air pollution can exert a selective force on plants at both the sporophytic and gametic levels. The application of knowledge regarding air pollution and ecological genetics focuses strongly on two central concepts. First, since plants vary from extremely sensitive to strongly resistant to air pollution, it is possible to select and breed for plants with either high or low sensitivity for use in managed ecosystems. Second, the maintenance of genetic diversity in plant populations in both unmanaged and managed ecosystems should be given more serious attention. This chapter reviews research activities in these two areas and suggests where additional research is needed. It focuses on trees and forest ecosystems, as others (Bell et al. Chapter 3, this volume) discuss similar aspects with other plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anonymous (1985) Forest genetic material endangered by aerial pollution. Silvae Genetica 34:49–50

    Google Scholar 

  • Ashmore MR, Bell JNB, Reily CL (1980) The distribution of phytotoxic ozone in the British Isles. Environmental Pollution (Series B) 1:195–216

    Article  CAS  Google Scholar 

  • Bell JNB, Cox RA (1975) Atmospheric ozone and plant damage in the United Kingdom. Environmental Pollution 8:163–170

    Article  CAS  Google Scholar 

  • Bell JNB, Ayazloo M, Wilson GB (1982) Selection for sulphur dioxide tolerance in grass populations in polluted areas. In: Bornkamm R, Lee JA, Seaward MRD (eds) Urban Ecology. Blackwell Scientific, Oxford, pp 171–180

    Google Scholar 

  • Bergmann F, Scholz F (1985) Effects of selection pressure by SO2 pollution on genetic structures of Norway spruce (Picea abies). In: Gregorius HR (ed) Population genetics in forestry; Lecture notes in biomathematics, Springer-Verlag, Berlin, pp 267–275

    Google Scholar 

  • Bergmann F, Scholz F (1987) The impact of air pollution on the genetic structure of Norway spruce. Silvae Genetica 36:80–83

    Google Scholar 

  • Bergmann F, Scholz F (1989) Selection effects of air pollution in Norway spruce (Picea abies) populations. In: Scholz F, Gregorius HR, Rudin D (eds) Genetic aspects of air pollutants in forest tree populations. Springer-Verlag, Berlin, pp 143–160

    Google Scholar 

  • Berrang P, Karnosky DF, Mickler RA, Bennett JP (1986a) Natural selection for ozone tolerance in Populus tremuloides. Canadian Journal of Forest Research 16:1214–1216

    Article  CAS  Google Scholar 

  • Berrang P, Karnosky DF, Mickler RA, Bennett JP (1986b) Population changes in eastern hardwoods caused by air pollution. Proceedings of the North American Forest Biology Workshop, pp 3–10

    Google Scholar 

  • Berrang P, Karnosky DF, Bennett JP (1989) Natural selection for ozone tolerance in Populus tremuloides. II. Field verification. Canadian Journal of Forest Research 19:519–522

    Article  CAS  Google Scholar 

  • Bialobok S (1980) Studies on the effect of sulphur dioxide and ozone on the respiration and assimilation of trees and shrubs in order to select individuals resistant to action of these gases. Polish Academy of Sciences, Report Pl-FS 74

    Google Scholar 

  • Bialobok S, Karolewski P, Oleksyn J (1980) Sensitivity of Scot’s pine needles from mother trees and their progenies to the action of SO2, O3, a mixture of these gases, NO2 and HF. Aboretum Kornickie 25:289–303

    CAS  Google Scholar 

  • Bruck RI (1984) Decline of montane boreal ecosystems in central Europe and the southern Appalachian mountains. Proceedings of the Technical Association of the Pulp and Paper Industry 159–163

    Google Scholar 

  • Butler LK, Tibbitts TW, Bliss FA (1979) Inheritance of resistance to ozone in Phaseolus vulgaris L. Journal of the American Society of Horticultural Science 104:211–213

    Google Scholar 

  • Cox RM, Spavold-Tims J, Hughes RN (1989) Coastal white birch deterioration in areas receiving acid fog and other pollutants around the Bay of Fundy, Canada. In: Bucher JB and Bucher-Wallin I (eds) Air pollution and forest decline, vol 2. EAFV, Birmensdorf, Switzerland, pp 393–396

    Google Scholar 

  • Davis DD, Coppolino JB (1974) Relative ozone susceptibility of selected woody ornamentals. HortScience 9:537–539

    Google Scholar 

  • Davis DD, Umbach DM, Coppolino JB (1981) Susceptibility of tree and shrub species and response of black cherry foliage to ozone. Plant Disease 65:904–907

    Article  CAS  Google Scholar 

  • Dochinger LS, Seliskar CE (1965) Results from grafting chlorotic dwarf and healthy eastern white pine. Phytopathology 55:404–407

    Google Scholar 

  • Eckert RT (1989) Genetic variation in red spruce and its relation to forest decline in the Northeastern United States. In: Bucher JB and Bucher-Wallin I (eds) Air pollution and forest decline, vol 1. EAFV, Birmonsdorf, Switzerland pp 319–324

    Google Scholar 

  • Engle RL, Gabelman WH (1966) Inheritance and mechanism for resistance to ozone damage in onion (Allium cepa L.) American Society of Horticultural Science 89:423–430

    Google Scholar 

  • Farrar JF, Relton J, Rutter AJ (1977) Sulphur dioxide and the scarcity of Pinus sylvestris in the industrial pennines. Environmental Pollution 14:63–68

    Article  CAS  Google Scholar 

  • Feder WA, Kelleher TJ, Riley WD, Perkins I (1975) Ozone injury on tobacco plants on Nantucket Island is caused by long-range transport of ozone from the mainland. Proceedings of the American Phytopathologists Society 2:97

    Google Scholar 

  • Fowler D, JN Cape (1982) Air pollutants in agriculture and horticulture. In: Unsworth MH, DP Ormro (eds) Effects of gaseous air pollution in agriculture and horticulture. Butterworth, London, pp 3–26

    Google Scholar 

  • Fox DG, Bartuska AM, Byrne JG, Cowling E, Fisher R, Likens GE, Lindberg SE, Linthurst RA, Messer J, Nichols DS (1989) A screening procedure to evaluate air pollution effects on Class I wilderness areas. USD A Forest Service Gen Tech Rep RM-168

    Google Scholar 

  • Garsed SG, Rutter AJ (1982) Relative performance of conifer populations in various tests for sensitivity to SO2 and the implications for selecting trees for planting in polluted areas. New Phytologist 92:349–367

    Article  Google Scholar 

  • Geburek T, Scholz F, Knabe W, Vornweg A (1987) Genetic studies by isozyme gene loci on tolerance and sensitivity in an air polluted Pinus sylvestris field trial. Silvae Genetica 36:49–53

    Google Scholar 

  • Gordon AG, Gorham E (1963) Ecological aspects of air pollution from an iron-sintering plant at Wawa, Ontario. Canadian Journal of Botany 41:1063–1078

    Article  CAS  Google Scholar 

  • Goren AI, Donagi AE (1980) Assessment of atmospheric ozone levels in Israel through foliar injury to Bel-W3 tobacco plants. Oecologia 44:418–421

    Article  Google Scholar 

  • Gregorius HR (1986) The importance of genetic multiplicity for tolerance of atmospheric pollution. Proceedings of the 18th IUFRO World Congress, Division 2, vol 1. Ljubljana, Yugoslavia, pp 295–305

    Google Scholar 

  • Gregorious HR, Hattemer HH, Bergmann F, Muller-Starck G (1985) Umweltbelastung und Anpassungsfähigkeit von Baumpopulationen. Silvae Genetica 34:230–241

    Google Scholar 

  • Grimes HD, Perkins KK, Boss WF (1983) Ozone degrades into hydroxyl radical under physiological conditions: a spin trapping method. Plant Physiology 72:1016–1020

    Article  PubMed  CAS  Google Scholar 

  • Heck WW, Heagle AS (1970) Measurement of photochemical air pollution with a sensitive monitoring plant. Journal of the Air Pollution Control Association 20:97–99

    PubMed  CAS  Google Scholar 

  • Hedgcock, GG (1914) Injury by smelter smoke in southeastern Tennessee. Journal of the Washington Academy of Science 4:70–71

    CAS  Google Scholar 

  • Horsman DC (1981) A survey of ozone in Melbourne using tobacco as an indicator plant. Environmental Pollution (Series B) 2:69–77

    Article  Google Scholar 

  • Houghton RA, Woodwell GM (1989) Global climatic change. Scientific American 260:36–44

    Article  CAS  Google Scholar 

  • Illman BL, Pell EJ (1985) Characterization of ozone response of potato leaf protoplasts. Canadian Journal of Botany 63:1936–1941

    CAS  Google Scholar 

  • Johnson AH (1983) Red spruce decline in the Northeastern US: Hypotheses regarding the role of acid rain. Journal of the Air Pollution Control Association 33:1049–1054

    Google Scholar 

  • Kabala SJ (1989) The economic effects of sulfur dioxide pollution in Poland. Ambio 18:250–251

    Google Scholar 

  • Kanak K (1986) Possibilities for using species of Pinus for afforestation at emission areas. Proceedings of the 18th IUFRO World Forestry Congress, Division 2, vol 1. Ljubljana, Yugoslavia, pp 39–47

    Google Scholar 

  • Karnosky DF (1980) Changes in southern Wisconsin white pine stands related to air pollution sensitivity. In: Miller PR (ed) Proceedings of the Symposium on the Effects of Air Pollutants on Mediterranean and Temperate Forest Ecosystems. USDA Gen Tech Rep PSW-49, p 238

    Google Scholar 

  • Karnosky DF (1981) Chamber and field evaluations of air pollution tolerances of urban trees. Journal of Arboriculture 7:99–105

    Google Scholar 

  • Karnosky DF, Steiner KC (1981) Provenance and family variation in response of Fraxinus americana and F. pennsylvanica to ozone and sulfur dioxide. Phytopathology 71:804–807

    Article  Google Scholar 

  • Karnosky DF (1989) Air pollution induced population changes in North American forests. In: Bucher JB, Bucher-Wallin I (eds) Air pollution and forest decline, vol 1. EAFV, Birmonsdorf, Switzerland, pp 315–317

    Google Scholar 

  • Karnosky DF, Scholz F, Geburek T, Rudin D (1989) Implications of genetic effects of air pollution on forest ecosystems-knowledge gaps. In: Scholz F, Gregorius HR, Rudin D (eds) Genetic aspects of air pollutants in forest tree populations. Springer-Verlag, Berlin, pp 199–201

    Google Scholar 

  • Keller T (1988) Growth and premature leaf fall in American aspen as bioindications for ozone. Environmental Pollution 52:183–192

    Article  PubMed  CAS  Google Scholar 

  • Klein RM, Perkins TD (1988) Primary and secondary causes and consequences of contemporary forest decline. Botany Review 54:1–43

    Article  Google Scholar 

  • Knabe W (1976) Effects of sulfur dioxide on terrestrial vegetation. Ambio 5:213–218

    CAS  Google Scholar 

  • Kriebel HB, Leben C (1981) The impact of air pollution on the gene pool of eastern white pine. Proceedings of the 17th IUFRO World Congress, Division 2. Kyoto, Japan, pp 185–189

    Google Scholar 

  • Larsen JB (1986) Silver fir decline: a new hypothesis concerning this complex decline syndrome in Abies alba (Mill.) Forstwirtschaft Centralblatt 105:381–396

    Article  Google Scholar 

  • Larsen JB, Qian XM, Scholz F, Wagner I (1988) Ecophysiological reactions of different provenances of European silver fir (Abies alba Mill.) to SO2 exposure during winter. European Journal of Forest Pathology 18:44–50

    Article  CAS  Google Scholar 

  • Ledig FT (1988) The conservation of diversity in forest trees. Bioscience 38:471–479

    Article  Google Scholar 

  • Lerner IM (1954) Genetic homeostatis. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Magasi LP (1985) Forest pest conditions in the Maritimes in 1985. Information Report M-X-159. Canadian Forestry Service-Maritimes, pp 29–32

    Google Scholar 

  • Manning WJ, Feder WA (1980) Biomonitoring air pollutants with plants. Applied Science Publishers, London

    Google Scholar 

  • Mazurski KR (1986) The destruction of forests in the Polish Sudetes Mountains by industrial emissions. Forest Ecology Management 17:303–315

    Article  Google Scholar 

  • Mejnartowicz LE (1983) Changes in genetic structure of Scots pine (Pinus silvestris L.) population affected by industrial emission of fluoride and sulphur dioxide. Genetica Pollonica 24:41–47

    CAS  Google Scholar 

  • Miller PR (1973) Oxidant-induced community change in a mixed conifer forest. Advances in Chemistry 122:101–117

    Article  Google Scholar 

  • Miller PR, Parmeter JR, Taylor OC, Cardiff EA (1963) Ozone injury to the foliage of ponderosa pine. Phytopathology 53:1072–1076

    CAS  Google Scholar 

  • Muhs HJ (1989) Measures for the conservation of forest gene resources in the Federal Republic of Germany. In: Scholz F, Gregorious HR, Rudin D (eds) Genetic aspects of air pollutants in forest tree Populations. Springer-Verlag, Berlin, pp 187–198

    Google Scholar 

  • Muller-Starck G (1985) Genetic differences between “tolerant” and “sensitive” beeches (Fagus sylvatica L.) in an environmentally stressed adult forest stand. Silvae Genetica 34:241–247

    Google Scholar 

  • Muller-Starck LG (1989) Genetic implications of environmental stress in adult forest stands of Fagus sylvatica L. In: Scholz F, Gregorius HR, Rudin D (eds) Genetic aspects of air pollutants in forest tree Populations. Springer-Verlag, Berlin, pp 127–142

    Google Scholar 

  • Paces T (1985) Sources of acidification in Central Europe estimated from elemental budgets in small basins. Nature 315:31–36

    Article  CAS  Google Scholar 

  • Pitelka LF (1988) Evolutionary response of plants to anthropogenic pollutants. Trends in Ecology and Evolution 3:233–236

    Article  PubMed  CAS  Google Scholar 

  • Posthumus AC (1976) The use of higher plants as indicators for air pollution in the Netherlands. In: Karenlampi L (ed) Proceedings of the Kuopio Meeting on Plant Damage Caused by Air Pollution. Kuopio, Finland, pp 115–120

    Google Scholar 

  • Prinz B, Krause GHM, Jung KD (1987) Development and causes of novel forest decline in Germany. In: Hutchinson TC, Meema KM (eds) Effects of atmospheric pollutants on forests, wetlands and agricultural ecosystems. Springer-Verlag, Berlin, pp 1–24

    Google Scholar 

  • Rohmeder E, Schonborn UA (1965) Der Einfluss von Umwelt und Erbgut auf die Widerstandsfähigkeit der Waldbäume gegenüber Luftverunreinigung durch Industrieabgase. Forstwirtschaft Centralblatt 84:1–13

    Article  Google Scholar 

  • Scheffer TC, Hedgcock GG (1955) Injury to northwestern forest trees by sulfur dioxide from smelters. USD A Technical Bulletin 1117

    Google Scholar 

  • Scholz F, Gregorius HR, Rudin D (eds) (1989) Genetic effects of air pollutants in forest-tree populations. Springer-Verlag, Berlin

    Google Scholar 

  • Scholz F, Bergmann F (1984) Selection pressure by air pollution as studied by isozyme-gene-systems in Norway spruce exposed to sulphur dioxide. Silvae Genetica 33:238–241

    Google Scholar 

  • Scott JT, Siccama TG, Johnson AH, Breisch AR (1984) Decline of red spruce in the Adirondacks. New York, Bulletin of the Torrey Botany Club 111:438–444

    Article  Google Scholar 

  • Siccama TG, Bliss M, Vogelmann H (1982) Decline of red spruce in the Green Mountains of Vermont. Bulletin Torrey Botany Club 109:162–168

    Article  Google Scholar 

  • Sigal LL, Eversman S, Berglund DL (1988) Isolation of protoplasts from loblolly pine needles and their flow-cytometric analysis for air pollution effects. Environmental and Experimental Botany 28:151–161

    Article  CAS  Google Scholar 

  • Sinclair WA (1969) Polluted air: potent new selective force in forests. Journal of Forestry 69:305–309

    Google Scholar 

  • Smith WH (1974) Air pollution. Effects on the structure and function of the temperate forest ecosystem. Environmental Pollution 6:111–129

    Article  CAS  Google Scholar 

  • Tanaka K, Furusawa I, Kondo N, Tanaka K (1988) SO2 tolerance of tobacco plants regenerated from paraquat-tolerant callus. Plant Cell Physiology 29:743–746

    CAS  Google Scholar 

  • Tovar, DC (1989) Air pollution and forest decline near Mexico City. Environmental Monitoring Assessment 12:49–66

    Article  Google Scholar 

  • Townsend AM, Dochinger LS (1974) Relationship of seed source and development stage to the ozone tolerance of Acer rubrum seedlings. Atmospheric Environment 8:957–964

    Article  CAS  Google Scholar 

  • Treshow M (1980) Pollution effects on plant distribution. Environmental Conservation 7:279–286

    Article  Google Scholar 

  • Vaicys M, Armolaitis K (1986) Gas resistance and regeneration of forests damaged by industrial emission. Proceedings of the 18th IUFRO World Forestry Congress, Division 2, vol 1. Ljubljana, Yugoslavia, pp 360–367

    Google Scholar 

  • Vogelmann HW, Badger GJ, Bliss M, Klein RM (1985) Forest decline on Camels Hump, Vermont. Bulletin Torrey Botany Club 112:274–287

    Article  Google Scholar 

  • Wang D, Karnosky DF, Bormann FH (1986) Effects of ambient ozone on the productivity of Populus tremuloides Michx. grown under field conditions. Canadian Journal of Forestry Research 16:47–55

    Article  CAS  Google Scholar 

  • Woodwell GM (1970) Effects of pollution on the structure and physiology of ecosystems. Science 168:429–433

    Article  PubMed  CAS  Google Scholar 

  • Woodwell GM (1989) On causes of biotic impoverishment. Ecology 70:14–15

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Karnosky, D.F. (1991). Ecological Genetics and Changes in Atmospheric Chemistry: The Application of Knowledge. In: Taylor, G.E., Pitelka, L.F., Clegg, M.T. (eds) Ecological Genetics and Air Pollution. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3060-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3060-1_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7780-4

  • Online ISBN: 978-1-4612-3060-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics