Parameterization of Land-Surface Processes in Numerical Weather Prediction

  • Christian Blondin


This chapter introduces the problem of the parameterization of land-surface processes, which is a component of the “physical package” of most of operational Numerical Weather Prediction Models (NWPMs). It is assumed that the reader is familiar with the basic problem of parameterizing turbulent surface fluxes and with at least the background of the most widely used formulations (see, e.g., Rowntree, this volume). So this chapter concentrates on the practical problems of accounting for land-surface processes in NWPMs.


Planetary Boundary Layer Roughness Length Surface Flux Numerical Weather Prediction Moisture Flux 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. André JC, Blondin C (1986). On the effective roughness length for use in numerical three-dimensional models. Bound-Layer Meteorol 35:231–245.CrossRefGoogle Scholar
  2. André JC, Goutorbe JP, Perrier A (1986). HAPEX-MOBILHY: A hydrological atmospheric experiment for the study of water budget and evaporation flux at the climate scale. Bull Am Meteorol Soc 67:138–144.CrossRefGoogle Scholar
  3. Baumgartner A, Mayer H, Metz W (1977). Weltweite Verteilung des Rauhigkeitparameters ZO mit Anwendung auf die Energiedissipation an der Erdoberflache. Meteorol Rdsch 30:43–48.Google Scholar
  4. Becker F, Bolle HJ, Rowntree PR (1987). The international satellite land-surface climatology project. ISLSCP Report No. 10.Google Scholar
  5. Blondin C, Böttger H (1987). The surface and sub-surface parameterization scheme in the ECMWF forecasting system: Revision and operational assessment of weather elements. ECMWF Res Dept Tech Memo No. 135.Google Scholar
  6. Bolle HJ, Rasool SI (1985). Development of the implementation plan for the International Satellite Land-Surface Climatology Project, Phase I WCP-94 World Meteorological Organization, Geneva.Google Scholar
  7. Brutsaert WH (1982). “Evaporation into the Atmosphere”. Reidel, Dordrecht.Google Scholar
  8. Budyko MI (1956). “Heat Balance at the Earth’s Surface”. Gidrometeoizdat Leningrad (in Russian).Google Scholar
  9. Chahine MT, Haskins R, Suskind J, Reuter D (1986). Remote sensing of land-surface temperature from HIRS/MSU data. Proc ISLSCP Int Conf Parameterization of Land-Surface Characteristics; Use of Satellite Data in Climate Studies; First Results of ISLSCP, Rome, pp 215–221.Google Scholar
  10. Deardorff JW (1978). Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J Geophys Res 20:1889–1903.CrossRefGoogle Scholar
  11. Dedieu G, Deschamps PY, Kerr IH (1987). Satellite estimation of solar irradiance at the surface of the earth and of surface albedo using a physical model applied to METEOSAT data. J Clim Appl Meteorol 26:79–87.CrossRefGoogle Scholar
  12. Dickinson RE (1984). Modeling evapotranspiration for three-dimensional global climate models. “Climate Processes and Climate Sensitivity”. Geophysical Monograph, 29, Maurice Ewing Vol. 5, American Geophysical Union, pp 58–72.Google Scholar
  13. Dickinson RE, Henderson-Sellers A (1988). Modelling tropical deforestation: A study of GCM land-surface parameterization. Quart J R Meteorol Soc 114:439–462.CrossRefGoogle Scholar
  14. Dickinson RE, Henderson-Sellers A, Kennedy PJ, Wilson MF (1986). Biosphere/Atmosphere Transfer Scheme (BATS) for the NCAR Community Climate Model. NCAR Tech Note, Boulder, CO, 80307.Google Scholar
  15. Geleyn JF (1988). Interpolation of wind, temperature and humidity values from model levels to the height of measurements. Tellus 40A:347–351.CrossRefGoogle Scholar
  16. Hollingsworth A, Lonnberg P (1986). The statistical structure of short range forecast errors as determined from radiosonde data. Part I: The wind errors. Tellus 38A:111–136.CrossRefGoogle Scholar
  17. Le Dimet F, Talagrand O (1986). Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus 38A:97–110.CrossRefGoogle Scholar
  18. Lorenc AC (1981). A global three-dimensional multivariate statistical interpolation scheme. Mon Weather Rev 109:701–721.CrossRefGoogle Scholar
  19. Louis JF (1979). A parametric model of vertical eddy fluxes in the atmosphere. Bound-Layer Meteorol 17: 187–202.CrossRefGoogle Scholar
  20. Mahrt L (1987). Grid-averaged surface fluxes. Mon Weather Rev 115:1550–1560.CrossRefGoogle Scholar
  21. Mahrt L, Berthou C, Marquet P, André JC (1986). Time averaging the flux-profile relationship. Ann Geophys 4B:411–416.Google Scholar
  22. Mason PJ (1986). On the parameterization of orographic drag. Workshop on “Observation, Theory and Modelling of Orographic Effects”, pp 167–194. European Center for Medium-range Weather Forecasting, Reading, UK.Google Scholar
  23. Mintz Y (1984). The sensitivity of numerically simulated climates to land-surface conditions. “The Global Climate” (J. Houghton, ed.), pp 79–105. Cambridge University Press, Cambridge.Google Scholar
  24. Monteith JL (1965). Evaporation and environment. Symp Soc Exp Biol 19, Swansea, 8–12 September 1964, 205–236.Google Scholar
  25. Noilhan J, Planton S (1989). A simple parameterization of land-surface processes for meteorological models. Mon Weather Rev 17:536–549.CrossRefGoogle Scholar
  26. Preuss JH, Geleyn JF (1980). Surface albedos derived from satellite data and their impact on forecast models. Arch Meteorol Geoph Biokl A29.345–356.CrossRefGoogle Scholar
  27. Rowntree PR, Bolton JA (1983). Simulation of the atmospheric response to soil moisture anomalies over Europe. Quart JR Meteorol Soc 109:501–526.CrossRefGoogle Scholar
  28. Sellers PJ, Dorman JL (1987). Testing the Simple Biosphere model (SiB) using point micrometeorological and biophysical data. J Clim Appl Meteorol 26: 622–651.CrossRefGoogle Scholar
  29. Sellers PJ, Hall FG (1987). FIFE Experiment plan. ISLSCP Report No. 8.Google Scholar
  30. Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986). A Simple Biosphere model (SiB) for use within general circulation models. J Atmos Sci 43:505–531.CrossRefGoogle Scholar
  31. Sommeria G (1985). Parameterization of land-surface processes. Sem Phys Parameterization Numerical Models Atmos, 233–264.Google Scholar
  32. Sud YC, Smith WE (1984). Ensemble formulation of surface fluxes and improvement in evapotranspiration and cloud parameterizations in a GCM. Bound-Layer Meteorol 29:185–210.CrossRefGoogle Scholar
  33. Taconet O, Bernard R, Vidal-Madjar D (1986). Evapo-transpiration over an agricultural region using a surface flux/temperature model based on NOAA-AVHRR data. J Clim Appl Meteorol 25:284–307.CrossRefGoogle Scholar
  34. Taylor P (1987). Comments and further analysis on effective roughness lengths for use in numerical three dimensional models. Bound-Layer Meteorol 39:403–418.CrossRefGoogle Scholar
  35. Verstraete M, Dickinson RE (1986). Modelling surface processes in atmospheric general circulation models. Ann Geophys 4B:357–364.Google Scholar
  36. Wilson MF, Henderson-Sellers A (1985). Cover and soil data sets for use in general circulation climate models. J Climatol 5:119–143.CrossRefGoogle Scholar
  37. Wilson MF, Henderson-Sellers A, Dickinson RE, Kennedy PJ (1987). Sensitivity of the biosphere-atmosphere transfer scheme (BATS) to the inclusion of variable soil characteristics. J Climatol Appl Meteorol 26:341–362.CrossRefGoogle Scholar
  38. WMO-ICSU (1985). International Satellite Cloud Climatology Project (ISCCP)-Description of reduced resolution radiance data. WMO/TD, No. 58, World Meteorological Organization, Geneva.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1991

Authors and Affiliations

  • Christian Blondin

There are no affiliations available

Personalised recommendations