Skip to main content

Vesicular-Arbuscular Mycorrhizae as Modifiers of Soil Fertility

  • Chapter
Advances in Soil Science

Part of the book series: Advances in Soil Science ((SOIL,volume 15))

Abstract

It has become clear that microbial activity must be considered a key component among those conferring “soil fertility,” i.e., the ability of a given soil to support plant development and nutrition (Pauli, 1967). The major components interacting to determine “soil fertility” are depicted in Figure 1. Accordingly, “fertility” can be considered an inherent property of a given soil. However, the plant itself is able to modify soil fertility in two different ways. One is based on the “rhizosphere effect” exerted by the plant, which can alter the fluxes of energy and the supply of substrates for soil microorganisms. The other way is based on the inherently different growth rates and metabolism of the different plant species that are known to “change” the capacity of the soil to provide each particular plant with nutrients (Hayman, 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, L.K., and A.D. Robson. 1984. The effect of mycorrhizas on plant growth, pp. 113–130. In: C.L. Powell and D.J. Bagyaraj (eds.), VA mycorrhiza. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Abbott, L.K., and A.D. Robson. 1985. Formation of external hyphae in soil by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol. 99: 255–255.

    Google Scholar 

  • Abbott, L.K., A.D. Robson, and G. De Boer. 1984. The effect of phosphorus on the formation of hyphae in soil by the vesicular-arbuscular mycorrhizal fungus, Glomus fasciculatum. New Phytol. 97: 437–446.

    CAS  Google Scholar 

  • Allen, M.F. 1982. Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis (H.B.J.) Lag ex Steud. New Phytol. 91: 191–196.

    Google Scholar 

  • Allen, E.B., and M.F. Allen. 1988. Facilitation of succession by the nonmycotrophic colonizer Salsola kali (Chenopodiaceae) on a harsh site: Effects of mycorrhizal fungi. Am. J. Bot. 75: 257–266.

    Google Scholar 

  • Allen, E.B., J.C. Chambers, K.F. Connor, M.F. Allen, and R.W. Brown. 1987. Natural reestablishment of mycorrhizae in disturbed alpine ecosystems. Arctic Alpine Res. 19: 11–20.

    Google Scholar 

  • Allen, E.B., and G.L. Cunningham. 1983. Effects of vesicular-arbuscular mycorrhizae on Distichlis spicata under three salinity levels. New Phytol. 93: 227–236.

    Google Scholar 

  • Ames, R.N., L. Porter, T.V. St. John, and C.P.P. Reid. 1984. Nitrogen sources and ‘A’ values for vesicular-arbuscular and non-mycorrhizal sorghum grown at three rates of 15N ammonium sulphate. New Phytol. 97: 269–276.

    CAS  Google Scholar 

  • Ames, R.N., C.P.P. Reid, L.K. Porter, and C. Cambardella. 1983. Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol. 95: 381–395.

    Google Scholar 

  • Amijee, F., P.B. Tinker, and D.P. Stribley. 1989. The development of endomycorrhizal root systems. VII. A detailed study of effects of soil phosphorus on colonization. New Phytol. 111: 435–446.

    Google Scholar 

  • Arines, J. 1990. Aspectos físico químicos de la fijación y movilización biológica de nutrientes en el suelo y su incidencia en la formación y efectos de las micorrizas VA. In: J.L. Gorge, J.M. Barea, and J. Olivares (eds.), Fijación y movilización biológica de nutrientes. Nuevas tendencias. C.S.I.C., Madrid (in press).

    Google Scholar 

  • Auge, R.M., K.A. Schekel, and R.L. Wample, 1987. Leaf water and carbohydrate status of VA mycorrhizal rose exposed to drought stress. Plant Soil 99: 291–302.

    Google Scholar 

  • Azcón, R., F. El-Atrach, and J.M. Barea. 1988. Influence of mycorrhiza vs. soluble phosphate on growth nodulation and N2 fixation (15N) in alfalfa under different levels of water potential. Biol. Fertil. Soils 7: 28–31.

    Google Scholar 

  • Azcón, R., A. Marin, and J.M. Barea. 1978. Comparative role of phosphate in soil or inside the host on the formation and effects of endomycorrhiza. Plant Soil 49: 561–567.

    CAS  Google Scholar 

  • Azcon, R., and J.A. Ocampo. 1981. Factors affecting the vesicular-arbuscular infection and mycorrhizal dependency of thirteen wheat cultivars. New Phytol. 87: 677–685.

    Google Scholar 

  • Azcon-Aguilar, C., and J.M. Barea. 1990. Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: F. Allen (ed.), Mycorrhizal functioning Routledge, Chapman and Hall. Inc. New York (in press).

    Google Scholar 

  • Azcon-Aguilar, C., J.M. Barea, R. Azcon, and R.M. Diaz Rodriguez. 1986a. Assessment of field situations for the feasibility of vesicular-arbuscular mycorrhizal inoculation using a forage legume as test plant. Agric. Ecosyst. Environ. 15: 241–252.

    Google Scholar 

  • Azcon-Aguilar, C., V. Gianinazzi-Pearson, J.C. Fardeau, and S. Gianinazzi. 1986b. Effect of vesicular-arbuscular mycorrhizal fungi and phosphate-solubilizing bacteria on growth and nutrition of soybean in a neutral-calcareous soil given 32P45Ca tricalcium phosphate. Plant Soil 96: 3–15.

    CAS  Google Scholar 

  • Baas, R., C. Van Dijk, and S.R. Troelstra. 1989. Effects of rhizosphere soil, vesicular-arbuscular mycorrhizal fungi and phosphate on Plantago major L. ssp. pleiosperma Pilger. Plant Soil. 113: 59–67.

    Google Scholar 

  • Bagyaraj, D.J. 1984. Biological interactions with VA mycorrhizal fungi, pp. 131–153. In: C.L. Powell, and D.J. Bagyaraj (eds.), VA mycorrhiza. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Barea, J.M. 1986. Importance of hormones and root exudates in mycorrhizal phenomena. pp. 177–187. In: V. Gianinazzi-Pearson and C. Gianinazzi (eds.), Physiological and genetical aspects of mycorrhizae. INRA, Paris.

    Google Scholar 

  • Barea, J.M. 1988. Endomycorrhiza biotechnology to improve plant productivity in intercropping systems, pp. 9–10. In: 2nd European Symposium on Mycorrhizae, Prague.

    Google Scholar 

  • Barea, J.M., and C. Azcón-Aguilar. 1982. Interactions between mycorrhizal fungi and soil microorganisms, pp. 181–193. In: S. Gianinazzi, V. Gianinazzi-Pearson, and A. Trouvelot (eds.), Les mycorhizes: Biologie et utilization. INRA, Paris.

    Google Scholar 

  • Barea, J.M., and C. Azcón-Aguilar. 1983. Mycorrhizas and their significance in nodulating nitrogen-fixing plants, pp. 1–54. In: N.C. Brady (ed.), Advances in agronomy. Academic Press, New York.

    Google Scholar 

  • Barea, J.M., R. Azcón, and C. Azcón-Aguilar. 1983. Interactions between phosphate solubilizing bacteria and VA mycorrhiza to improve the utilization of rock phosphate by plants in non acidic soils. In: 3rd International Congress on Phosphorus Compounds, Brussels.

    Google Scholar 

  • Barea, J.M., C. Azcón-Aguilar, and R. Azcón. 1987. Vesicular-arbuscular mycorrhiza improve both symbiotic N2 fixation and N uptake from soil as assessed with a 15N technique under field conditions. New Phytol. 106: 717–725.

    CAS  Google Scholar 

  • Barea, J.M., C. Azcón-Aguilar, and R. Azcon. 1988. The role of mycorrhiza in improving the establishment and function of the Rhizobium-legume system under field conditions, pp. 153–162. In: D.P. Beck and L.A. Materon (eds.), Nitrogen fixation by legumes in Mediterranean agriculture. ICARDA, and Martinus Nijhoff. Dordrecht

    Google Scholar 

  • Barea, J.M., R. Azcon, and C. Azcon-Aguilar. 1989a. Time-course of N2-fixation (15N) in the field by clover growing alone or in mixture with ryegrass to improve pasture productivity, and inoculated with vesicular-arbuscular mycorrhizal fungi. New Phytol. 112: 399–404.

    Google Scholar 

  • Barea, J.M., F. El-Atrach, and R. Azcon. 1989b. Mycorrhiza and phosphate interactions as affecting plant development, N2-fixation, N-transfer and N-uptake from soil in legumes-grass mixtures by using a 15N dilution technique. Soil Biol. Biochem. 21: 581–589.

    Google Scholar 

  • Baylis, G.T.S. 1975. The magnoloid mycorrhiza and mycotrophy in root systems derived from it. pp. 373–389. In: F.E. Sanders, B. Mosse, and P.B. Tinker (eds.), Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • Beever, R.E., and D.J.W. Burns. 1980. Phosphorus uptake storage and utilisation by fungi. Adv. Bot. Res. 8: 128–219.

    Google Scholar 

  • Bethlenfalvay, G.J., M.S. Brown, R.N. Ames, and R.S. Thomas. 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol. Plant. 72: 565–571.

    CAS  Google Scholar 

  • Bieleski, R.L. 1973. Phosohate pools, phosphate transport, and phosphate availability. Annu. Rev. Plant Physiol. 24: 225–252.

    CAS  Google Scholar 

  • Bolan, N.S., A.D. Robson, and N.J. Barrow. 1983. Plant and soil factors including mycorrhizal infection causing sigmoidal response of plants to applied phosphorus. Plant Soil 73: 187–201.

    CAS  Google Scholar 

  • Bolan, N.S., A.D. Robson, N.J. Barrow, and L.A.G. Aylmore. 1984. Specific activity of phosphorus in mycorrhizal and non-mycorrhizal plants in relation to the availability of phosphorus to plants. Soil Biol. Biochem. 16: 299–304.

    CAS  Google Scholar 

  • Bolan, N.S., A.D. Robson, and N.J. Barrow. 1987a. Effects of phosphorus application and mycorrhizal inoculation on root characteristics of subterranean clover and ryegrass in relation to phosphorus uptake. Plant Soil 104: 294–298.

    CAS  Google Scholar 

  • Bolan, N.S., A.D. Robson, N.J. Barrow. 1987b. Effects of vesicular-arbuscular mycorrhiza on the availability of iron phosphates to plants. Plant Soil 99: 401–410

    CAS  Google Scholar 

  • Bonfante-Fasolo, P. 1984. Anatomy and morphology of VA mycorrhizae. pp. 5–34. In: C.L. Powell and D.J. Bagyaraj (eds.), VA mycorrhiza. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Bowen, G.D. 1980. Misconceptions, concepts and approaches in rhizosphere biology. pp. 283–304. In: D.C. Ellwood, J.N. Hedger, M.J. Latham, J.M. Lynch, and J.H. Slater (eds.), Contemporary microbial ecology. Academic Press, London.

    Google Scholar 

  • Bowen, G.D., D.I. Bevege, and B. Mosse. 1975. Phosphate physiology of vesicular-arbuscular mycorrhizas. pp. 241–260. In: F.E. Sanders, B. Mosse, and P.B. Tinker (eds.), Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • Bowen, G.D., and S.E. Smith. 1981. The effects of mycorrhizas on nitrogen uptake by plants, pp. 237–247. In: F.W. Clark and T. Rosswall (eds.), Terrestrial nitrogen cycles: Processes, ecosystem strategies and management impacts. Ecological Bulletin No 33, Swedish Natural Science Research Council, Stockholm.

    Google Scholar 

  • Buwalda, J.G., G.J.S. Ross, D.P. Stribley, and P.B. Tinker. 1982. The development of endomycorrhizal root systems. III. The mathematical representation of the spread of vesicular-arbuscular mycorrhizal infection in root systems. New Phytol. 91: 669–682.

    Google Scholar 

  • Buwalda, J.G., D.P. Stribley, and P.B. Tinker. 1983. Increased uptake of anions by plants with vesicular-arbuscular mycorrhiza. Plant Soil 71: 463–467.

    CAS  Google Scholar 

  • Buwalda, J.G., D.P. Stribley, and P.B. Tinker. 1984. The development of endomycorrhizal root systems V. The detailed pattern of infection and the control of development of infection level by host in young leek plants. New Phytol. 96: 411–427.

    Google Scholar 

  • Callow, J.A., L.C.M. Capaccio, G. Parish, and P.B Tinker. 1978. Detection and estimation of polyphosphate in vesicular-arbuscular mycorrhizas. New Phytol. 80: 125–134.

    CAS  Google Scholar 

  • Capaccio, L.C.M., and J. A. Callow. 1982. The enzymes of polyphosphate metabolism in vesicular-arbuscular mycorrhizas. New Phytol. 91: 81–91.

    CAS  Google Scholar 

  • Chapin, F.S. III. 1980. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11: 233–260.

    CAS  Google Scholar 

  • Clarkson, D.T. 1985. Factors affecting mineral nutrient acquisition by plants. Annu. Rev. Plant. Physiol. 36: 77–115.

    CAS  Google Scholar 

  • Cooper, K.M. 1984. Physiology of VA mycorrhizal associations, pp. 155–186. In: C.L. Powell and D.J. Bagyaraj (eds.), VA mycorrhiza. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Cox, G., F.J. Moran, F.E. Sanders, C. Nockolds, and P.B. Tinker. 1980. Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. III. Polyphosphate granules and phosphorus translocation. New Phytol. 84: 649–659.

    CAS  Google Scholar 

  • Cox, G., F.E. Sanders, P.B. Tinker, and J.A. Wild. 1975. Ultrastructural evidence relating to host-endophyte transfer in a vesicular-arbuscular mycorrhiza. pp. 297–312 In: F.E. Sanders, B. Mosse, and P.B. Tinker (eds.), Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • Cress, W.A., G.O. Throneberry, and D.L. Lindsey. 1979. Kinetics of phosphorus absorption by mycorrhizal and non-mycorrhizal tomato roots. Plant Physiol. 64: 484–487.

    PubMed  CAS  Google Scholar 

  • Daft, M.J., and T.H. Nicolson. 1966. Effect of Endogone mycorrhiza on plant growth. New Phytol. 65: 343–350.

    Google Scholar 

  • Dakessian, M.S., M.S. Brown, and G.J. Bethlenfalvay. 1986. Relationship of mycorrhizal growth enhancement and plant growth with soil water and texture. Plant Soil. 94: 439–443.

    Google Scholar 

  • Danso, S.K.A. 1988. The use of 15N enriched fertilizers for estimating nitrogen fixation in grain and pasture legumes, pp. 245–358. In: D.P. Beck and L.A. Materon (eds.), Nitrogen fixation by legumes in Mediterranean agriculture. ICARDA, and Martinus Nijhoff. Dordrecht.

    Google Scholar 

  • Dehn, B., and H.W. Dehne. 1986. Development of VA mycorrhizal fungi and interactions with Cochliobolus sativus in roots of gramineae. pp. 773–778. In: V. Gianinazzi-Pearson and S. Gianinazzi (eds.), Physiological and genetical aspects of mycorrhizae. INRA, Paris.

    Google Scholar 

  • Dehne, H.W. 1987. Improvement of the VA mycorrhiza status in agriculture and horticulture, pp. 817–830. In: Transaction of the XIII. Congress of International Society of Soil Science, Hamburg.

    Google Scholar 

  • Dueck, T.A., P. Visser, W.H.O. Ernst, and H. Schat. 1986. Vesicular-arbuscular mycorrhizae decrease zinc-toxicity to grasses growing in zinc-polluted soil. Soil Biol. Biochem. 18: 331–333.

    Google Scholar 

  • Fitter, A.H., and R. Nichols. 1988. The use of benomyl to control infection by vesicular-arbuscular mycorrhizal fungi. New Phytol. 110: 201–206.

    CAS  Google Scholar 

  • Gardner I.C. 1986. Mycorrhizae of actinorrhizal plants. MIRCEN J. 2: 147–160.

    Google Scholar 

  • Gerschefske, D.K., B.A. Daniels-Hetrick, and G.W.T. Wilson. 1988. Relationship of soil fertility to suppression of the growth response of mycorrhizal big bluestem in non-sterile soil. New Phytol. 109: 473–481.

    Google Scholar 

  • Gianinazzi S., V. Gianinazzi-Pearson, and A. Trouvelot. 1988. Conceptual approaches for the rational use of VA endomycorrhizae in agriculture: Possibilities and limitations, pp. 39–40. In: 2nd European Symposium on Mycorrhizae, Prague.

    Google Scholar 

  • Gianinazzi-Pearson, V. 1984. Host-fungus specificity in mycorrhizae. pp. 225–253. In: D.P.S. Verma, and T.H. Hohn (eds.), Genes involved in plant-microbe interactions. Springer, Vienna.

    Google Scholar 

  • Gianinazzi-Pearson, V., J.C. Fardeau, S. Asimi, and S. Gianinazzi. 1981. Source of additional phosphorus absorbed from soil by vesicular-arbuscular mycorrhizal soybean. Physiol. Veg. 19: 33–43.

    Google Scholar 

  • Gianinazzi-Pearson, V., and S. Gianinazzi. 1986. The physiology of improved phosphate nutrition in mycorrhizal plants, pp. 101–109. In: V. Gianinazzi-Pearson and S. Gianinazzi (eds.), Physiological and genetical aspects of mycorrhizae. INRA, Paris.

    Google Scholar 

  • Habte, M., R.L. Fox, R. Aziz, and S.A. El-Swaify. 1988. Interaction of vesicular-arbuscular mycorrhizal fungi with erosion in an oxisol. Appl. Environ. Microbiol. 45: 945–950.

    Google Scholar 

  • Hardie, K. 1985. The effect of removal of extraradical hyphae on water uptake by vesicular-arbuscular mycorrhizal plants. New Phytol. 101: 677–684.

    Google Scholar 

  • Hardie, K., and L. Ley ton. 1981. The influence of vesicular-arbuscular mycorrhiza on growth and water relations of red clover. I. In phosphate deficient soil. New Phytol. 89: 599–608.

    Google Scholar 

  • Harinikumar, K.M., and D.J. Bagyaraj. 1988. Effect of crop rotation on native vesicular arbuscular mycorrhizal propagules in soil. Plant Soil. 110: 77–80.

    Google Scholar 

  • Harley, J.L., and S.E. Smith. 1983. Mycorrhizal symbiosis. Academic Press. London.

    Google Scholar 

  • Hartmond, U., N.V. Schaesberg, J.H. Graham, and JP. Syvertsen. 1987. Salinity and flooding stress effects on mycorrhizal and non-mycorrhizal citrus rootstock seedlings. Plant Soil. 104: 37–43.

    Google Scholar 

  • Hay man, D.S., 1975. Phosphorus cycling by soil micro-organisms and plant roots, pp. 67–91. In: N.D. Walker (ed.), Soil microbiology. Butterworths, London.

    Google Scholar 

  • Hay man, D.S. 1982. Influence of soils and fertility on activity and survival of vesicular-arbuscular mycorrhizal fungi. Phytopathology 72: 1119–1125.

    Google Scholar 

  • Hayman, D.S. 1983. The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Can. J. Bot. 61: 944–963.

    Google Scholar 

  • Hayman, D.S. 1984. The physiology of vesicular-arbuscular mycorrhiza. pp. 44–47. In: D.J. Thomson (ed.), Forage legumes, British Grassland Society Occasional Symposium 16, Hurley

    Google Scholar 

  • Hayman, D.S. 1986. Mycorrhizae of nitrogen-fixing legumes. MIRCEN J. 2: 121–145.

    Google Scholar 

  • Hayman, D.S., J.M. Day, and M. Dye. 1986. Preliminary observations on dual inoculation of white clover, pp. 467–473. In: V. Gianinazzi-Pearson and S. Gianinazzi (eds.), Physiological aspects of mycorrhizae. INRA Press, Paris.

    Google Scholar 

  • Hayman, D.S., and B. Mosse. 1972. Plant growth responses to vesicular-arbuscular mycorrhiza. III. Increased uptake of labile P from soil. New Phytol. 71: 41–47.

    Google Scholar 

  • Haynes, R.J. 1980. Competitive aspects of the grass-legume association, pp. 227–261. In: N.C. Brady (ed.), Advances in agronomy. Academic Press, New York.

    Google Scholar 

  • Hay stead, A., N. Malajczuk, and T.S. Crove. 1988. Underground transfer of nitrogen between pasture plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol. 108: 417–423.

    Google Scholar 

  • Heichel, G.H. 1987. Legume nitrogen: Symbiotic fixation and recovery by subsequent crops, pp. 63–80. In: A.R. Helsel (ed.), Energy in plant nutrition and pest control. Elsevier, Amsterdam.

    Google Scholar 

  • Hepper, C.M., C. Azcón-Aguilar, S. Rosendahl, and R. Sen. 1988. Competition between three species of Glomus used as spatially separated introduced and indigenous mycorrhizal inocula for leek (Allium porrum L.). New Phytol. 110: 207–215.

    Google Scholar 

  • Hirrel, M.C., and J.W. Gerdemann. 1980. Improved growth of onion and bell pepper in saline soils by two vesicular-arbuscular mycorrhizal fungi. Proc. Soil Sci. Soc. Am. 44: 654–655.

    CAS  Google Scholar 

  • Howeler, R.H., E. Sieverding, and S. Saif. 1987. Practical aspects of mycorrhizal technology in some tropical crops and pastures. Plant Soil. 100: 249–283.

    Google Scholar 

  • Jasper, D.A., L.K. Abbott, and A.D. Robson. 1989a. Soil disturbance reduces the infectivity of external hyphae of vesicular-arbuscular mycorrhizal fungi. New Phytol. 112: 93–99.

    Google Scholar 

  • Jasper, D.A., L.K. Abbott, and A.D. Robson. 1989b. Hyphae of a vesicular-arbuscular mycorrhizal fungus maintain infectivity in dry soil except when the soil is disturbed. New Phytol. 112: 101–107.

    Google Scholar 

  • Karunaratne, S., J.H. Baker, and A.V. Barker. 1986. Phosphorus uptake by mycorrhizal and nonmycorrhizal roots of soybean. J. Plant Nutr. 9: 1303–1313.

    CAS  Google Scholar 

  • Kessel, C.V., P.W. Singleton, and H.J. Hoben. 1985. Enhanced N-transfer from a soybean to maize by vesicular-arbuscular mycorrhizal (VAM) fungi. Plant Physiol. 79: 562–563.

    PubMed  Google Scholar 

  • Khasawneh, F.E., and E.D. Doll. 1978. The use of phosphate rock for direct application to soils, pp. 159–206. In: N.C. Brady (ed.), Advances in agronomy. Academic Press, New York.

    Google Scholar 

  • Koide, R.T., and M. Li. 1989. Appropriate controls for vesicular-arbuscular mycorrhiza research. New Phytol. 111: 35–44.

    Google Scholar 

  • Kucey, R.M.N., and R. Bonetti. 1988. Effect of vesicular-arbuscular mycorrhizal fungi and captan on growth and N2 fixation by Rhizobium-inoculated field beans. Can. J. Soil Sci. 68: 143–149.

    CAS  Google Scholar 

  • Kucey, R.M.N., H.H.K, Janzen, and M.E. Leggett. 1989. Microbially mediated increases in plant-available phosphorus, pp. 199–228. In: N.C. Brady (ed.), Advances in agronomy. Academic Press, New York.

    Google Scholar 

  • Linderman, R.G. 1988. Mycorrhizal interactions with the rhizosphere microflora: The mycorrhizosphere effect. Phytopathology 78: 366–371.

    Google Scholar 

  • Lopez-Aguillon, R., and B. Mosse. 1987. Experiments on competitiveness of three endomycorrhizal fungi. Plant Soil. 97: 155–170.

    Google Scholar 

  • Malloch, D.W., K.A. Pirozynski, and P.H. Raven. 1980. Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants. Proc. Natl. Acad. Sci. U.S.A. 77: 2113–2118.

    PubMed  CAS  Google Scholar 

  • Manjunath, A., N.V. Hue, and M. Habte. 1989. Response of Leucaena leucocephala to vesicular-arbuscular mycorrhizal colonization and rock phosphate fertilization in an oxisol. Plant Soil 114: 127–133.

    Google Scholar 

  • Martin, J.K. 1985. A single plant technique for field studies of distribution of 32P-labelled phosphate between plant and soil pools. Plant Soil 86: 415–432.

    Google Scholar 

  • Menge, J.A. 1984. Inoculum production, pp. 187–203. In: C.L. Powell and D.J. Bagyaraj (eds.), VA mycorrhiza. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Morton, J.B. 1988. Taxonomy of VA mycorrhizal fungi: Classification, nomenclature, and identification. Mycotaxon 32: 267–324.

    Google Scholar 

  • Mosse, B. 1973. Advances in the study of vesicular-arbuscular mycorrhiza. Annu. Rev. Phytopathol. 11: 171–196.

    Google Scholar 

  • Mosse, B. 1986. Mycorrhiza in a sustainable agriculture. Biol. Agri. Hortic. 3: 191–209.

    Google Scholar 

  • Mosse, B., D.S. Hayman, and D.J. Arnold. 1973. Plant growth responses to vesicular-arbuscular mycorrhiza. V. Phosphate uptake by three plant species from P-deficient soils labelled with 32P. New Phytol. 72: 809–815.

    CAS  Google Scholar 

  • Mosse, B., D.P. Stribley, and F. Le Tacon. 1981. Ecology of mycorrhizae and mycorrhizal fungi. Adv. Microb. Ecol. 5: 137–210.

    Google Scholar 

  • Munns, D.N., and B. Mosse. 1980. Mineral nutrition of legume crops, pp. 115–125. In: R.J. Summerfield and A.H. Bunting (eds.), Advances in legume science. Her Majesty’s Stationery Office, London.

    Google Scholar 

  • Newman, E.I. 1985. Some factors affecting the abundance of mycorrhizas in grassland, pp. 63–68. In: S.K. Danso (ed.), Nuclear techniques to study the role of mycorrhiza in increasing food crop production. IAEA-TECDOC-338. International Atomic Energy Agency, Vienna.

    Google Scholar 

  • Nicolson, T.H. 1975. Evolution of vesicular-arbuscular mycorrhizas. pp. 25–34. In: F.E. Sanders, B. Mosse, and P.B. Tinker (eds.), Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • Nye, P.H., and P.B. Tinker. 1977. Solute movement in the soil-root system. Blackwell, Oxford.

    Google Scholar 

  • Ocampo, J.A., and D.S. Hayman. 1981. Influence of plant interactions of vesicular-arbuscular mycorrhizal infections. II. Crop rotations and residual effects of non-host plants. New Phytol. 87: 333–343.

    Google Scholar 

  • Ofori, F., and W.R. Stern. 1987. Cereal-legume intercropping systems, pp. 41–48. In: N.C. Brady (ed.), Advances in agronomy. Academic Press, New York.

    Google Scholar 

  • Oliveira, V.L., and J. Garbaye. 1989. Les microorganismes auxiliares de Tetablissemement des symbioses mycorhiziennes. Eur. J. For. Pathol. 19: 54–64

    Google Scholar 

  • Owusu-Bennoah, E., and A. Wild. 1979. Autoradiography of the depletion zone of phosphate around onion roots in the presence of vesicular-arbuscular mycorrhiza. New Phytol. 82: 133–140.

    CAS  Google Scholar 

  • Pauli, F.W. 1967. Soil fertility. A biodynamical approach. Adam Hilger, London.

    Google Scholar 

  • Pearson, V., and P.B. Tinker. 1975. Measurement of phosphorus fluxes in the external hyphae of endomycorrhizas. pp. 277–287. In: F.E. Sanders, B. Mosse, and P.B. Tinker (eds.), Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • Peña, J.I., M. Sanchez-Díaz, J. Aguirreolea, and M. Becana. 1988. Increased stress tolerance of nodule activity in the Medicago-Rhizobium-Glomus symbiosis under drought. J. Plant. Physiol. 133: 79–83.

    Google Scholar 

  • Perrin, R. 1985. Peut-on computer sur les mycorrhizes pour lutter contre les maladies des plantes ligneuses ? Eur. J. For. Pathol. 15: 372–379.

    Google Scholar 

  • Pirozynski, K.A., and D.W. Malloch. 1975. The origin of land plants: A matter of mycotrophism. Biosystems 6: 153–164.

    PubMed  CAS  Google Scholar 

  • Plaut, Z., and C.M. Grieve. 1988. Photosynthesis of salt-stressed maize as influenced by Ca:Na ratios in the nutrient solution. Plant Soil 105: 283–286.

    CAS  Google Scholar 

  • Pond, E.C., J. A. Menge, and W.M. Jarrell. 1984. Improved growth of tomato in salinized soil by vesicular-arbuscular mycorrhizal fungi collected from saline soils. Mycologia 79: 74–84.

    Google Scholar 

  • Poss, J.A., E. Pond, J.A. Menge, and W.M. Jarrell. 1985. Effect of salinity on mycorrhizal onion and tomato in soil with and without additional phosphate. Plant Soil 88: 307–319.

    CAS  Google Scholar 

  • Powell, C.L. 1975. Plant growth responses to vesicular-arbuscular mycorrhiza. VIII. Uptake of P by onion and clover infected with different Endogone spore types in 32P-labelled soil. New Phytol. 75: 563–566.

    Google Scholar 

  • Rai, R. 1988. Interaction response of Glomus albidus and Cicer-Rhizobium strains on iron uptake and symbiotic N2 fixation in calcareous soil. J. Plant. Nutr. 11: 863–869.

    CAS  Google Scholar 

  • Rajapakse, S., D.A. Zubeber, and J.C. Miller, Jr. 1989. Influence of phosphorus level on VA mycorrhizal colonization and growth of cowpea cultivars. Plant Soil 114: 45–52.

    CAS  Google Scholar 

  • Rhodes, L.H., and Gerdemann, J.W. 1980. Nutrient translocation in vesicular-arbuscular mycorrhizae. pp. 173–195. In: C.B. Cooks, P.W. Pappas, and E.D. Rudolp (eds.), Cellular interactions in symbiosis and parasitism. Ohio State University Press, Columbus, OH.

    Google Scholar 

  • Rogers, R.D., and S.E. Williams. 1986. Vesicular-arbuscular mycorrhiza: Influence on plant uptake of cesium and cobalt. Soil Biol. Biochem. 18: 371–376.

    CAS  Google Scholar 

  • Safir, G.R., and C.E. Nelsen. 1981. Water and nutrient uptake by vesicular-arbuscular mycorrhizal plants, pp. 25–81. In: R. Myers (ed.), Mycorrhizal associations and crop production. Rutgers University Press, New Brunswick.

    Google Scholar 

  • Sanders, F.E. 1986. Quantitative approaches to the analysis of the development of mycorrhizal roots systems, pp. 209–216. In: V. Gianinazzi-Pearson and S. Gianinazzi (eds.), Physiological and genetical aspects of mycorrhizae. INRA, Paris.

    Google Scholar 

  • Sanders, F.E., and N.A. Sheikh. 1983. The development of vesicular-arbuscular mycorrhizal infection in plant root systems. Plant Soil 71: 223–246.

    Google Scholar 

  • Sanders, F.E., and P.B. Tinker. 1971. Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature 233: 278–279.

    PubMed  CAS  Google Scholar 

  • Sanders, F.E., and P.B. Tinker. 1973. Phosphate flow into mycorrhizal roots. Pestic. Sci. 4: 385–395.

    CAS  Google Scholar 

  • Sieverding, E., and J.M. Barea. 1990. Perspective de la inoculatión de sistemas de producción vegetal con hongos formadores de micorrizas VA. in: J.L. Gorgé, J.M. Barea, and J. Olivares (eds.), Fijación y movilización biológica de nutrientes. Nuevas tendencias. CSIC., Madrid (in press)

    Google Scholar 

  • Siqueira, J.O. 1987. Cultura axenica e monoxenica dos fungos micornzicos vesf-culo-arbusculares. pp. 44–70. In: II Reuniao Brasileira sobre Micorrizas, Sao Paulo.

    Google Scholar 

  • Skujins, J., and M.F. Allen. 1986. Use of mycorrhizae for land rehabilitation. MIRCEN J. 2: 161–176.

    Google Scholar 

  • Smith, F.A., and S.E. Smith. 1986. Movement across membrane: Physiology and biochemistry, pp. 75–84. In: V. Gianinazzi-Pearson and G. Gianinazzi (eds.), Physiological and genetical aspects of mycorrhizae. INRA, Paris.

    Google Scholar 

  • Smith, F.A., S.E. Smith, B.J. St. John, and D.J.D. Nicholas. 1986. Inflow of N and P into roots of mycorrhizal and non-mycorrhizal onions, pp. 371–375. In: V. Gianinazzi-Pearson and S. Gianinazzi (eds.), Physiological and genetical aspects of mycorrhizae. INRA, Paris.

    Google Scholar 

  • Smith, S.E. 1980. Mycorrhizas of autotrophic higher plants. Biol. Rev. 55: 475–510.

    CAS  Google Scholar 

  • Smith, S.E., and Gianinazzi-Pearson, V. 1988. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39: 221–244.

    CAS  Google Scholar 

  • Smith, S.E., B.J. St. John, F.A. Smith, and J.D. Nicholas. 1985. Activity of glutamine synthetase and glutamate dehydrogenase in Trifolium subterraneum L. and Allium cepa L: Effects of mycorrhizal infection and phosphate nutrition. New Phytol. 99: 211–227.

    CAS  Google Scholar 

  • Smith, S.E., and N.A. Walker. 1981. A quantitative study of mycorrhizal infection in Trifolium: Separate determination of the rates of infection and of mycelial growth. New Phytol. 89: 225–240.

    Google Scholar 

  • Son, C.L., and S.E. Smith. 1988. Mycorrhizal growth responses: interactions between photon irradiance and phosphorus nutrition. New Phytol. 108: 305–314.

    Google Scholar 

  • Son, C.L., F.A. Smith, and S.E. Smith. 1988. Effect of light intensity on root growth, mycorrhizal infection and phosphate uptake in onion (Allium cepa L.). Plant Soil. 111: 183–186.

    CAS  Google Scholar 

  • Stevenson, F.J. 1986. Cycles of soil. John Wiley & Sons, New York.

    Google Scholar 

  • Sylvia, D.M., and M.E. Will. 1988. Establishment of vesicular-arbuscular mycorrhizal fungi and other microorganisms on a beach replenishment site in Florida. Appl. Environ. Microbiol. 54: 348–352.

    PubMed  CAS  Google Scholar 

  • Thomas, R.S., S. Dakessian, R.N. Ames, M.S. Brown, and G.J. Bethlenfalvay. 1986. Aggregation of a silty clay loam soil by micorrhizal onion roots. Soil Sci. Soc. Am. J. 50: 1494–1499.

    Google Scholar 

  • Tinker, P.B. 1975. Soil chemistry of phosphorus and mycorrhizal effects on plant growth. In: pp. 353–371. F.E. Sanders, B. Mosse, and P.B. Tinker (eds.), Endomycorrhizas. Academic Press, London.

    Google Scholar 

  • Tinker, P.B. 1980. The role of rhizosphere microorganisms in phosphorus uptake by plants, pp. 617–654. In: F. Kwasaneh and E. Sample (eds.), The role of phosphorus in agriculture. American Society of Agronomy, Madison.

    Google Scholar 

  • Tinker, P.B. 1985. Modelling mycorrhizal development, pp. 140–141. In: R. Molina (ed.), Proceedings of the 6th North American conference on mycorrhizae. Fores Research Laboratory, Corvallis, OR.

    Google Scholar 

  • Tinker, P.B., and A. Gildon. 1983. Mycorrhizal fungi and ion uptake, pp. 21–32. In: D.A. Robb and W.S. Pierpoint (eds.), Metals and micronutrients. Uptake and utilization by plants. Academic Press, London.

    Google Scholar 

  • Tisdall, J.M., and J.M. Oades. 1979. Stabilisation of soil aggregates by the root systems of ryegrass. Aust. J. Soil Res. 17: 449–460.

    Google Scholar 

  • Walker, N.A., and S.E. Smith. 1984. The quantitative study of mycorrhizal infection. II. The relation of rate of infection and speed of fungal growth to propagule density, the mean length of infection unit and the limiting value of the fraction of the root infected. New Phytol. 96: 55–69.

    Google Scholar 

  • Westheimer, F.H. 1987. Why nature chose phosphates. Science. 235: 1173–1178.

    PubMed  CAS  Google Scholar 

  • White, J.A., L.C. Munn, and S.E. Williams. 1989. Edaphic and reclamation aspects of vesicular-arbuscular mycorrhizae in Wyoming red desert soils. Soil. Sci. Soc. Am. J. 53: 86–90.

    Google Scholar 

  • Wilson, J.M. 1984. Comparative development and interaction between vesicular- arbuscular mycorrhizal fungi. New Phytol. 97: 413–426.

    Google Scholar 

  • Young, C.C., T.C. Juang, and H.Y. Guo. 1986. The effect of inoculation with vesicular-arbuscular mycorrhizal fungi on soybean yield and mineral phosphorus utilisation in subtropical-tropical soils. Plant Soil 95: 245–253.

    CAS  Google Scholar 

  • Zambolim, L. 1987. Tolerancia de plantas micorrizadas a fitonematóides. pp. 103–125. In: II Reuniao brasileira sobre micorrizas, Sao Paulo.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this chapter

Cite this chapter

Barea, J.M. (1991). Vesicular-Arbuscular Mycorrhizae as Modifiers of Soil Fertility. In: Stewart, B.A. (eds) Advances in Soil Science. Advances in Soil Science, vol 15. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3030-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3030-4_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7768-2

  • Online ISBN: 978-1-4612-3030-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics