Skip to main content

Enzymatic 3β-Hydroxylation of Gibberellins A20 and A5

  • Conference paper
Gibberellins

Abstract

Following the elucidation of the gibberellin (GA) metabolic pathways from GA12-aldehyde, there is now considerable interest in the enzymes that catalyze the steps in these pathways. The enzymes that catalyze the post-GA20 steps (Fig. 1) in the early-13-hydroxylation pathway are of particular interest in view of the evidence that GA1 and possibly GA3 are the endogenous GAs active per se for stem elongation in maize seedlings.1–5 No studies of the enzymes for these post-GA20 conversions have been published for vegetative tissue (but see Chapter 3 by Phinney et al. in this volume). Current information on the characterization of these enzymes comes from developing seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Phinney BO, Spray CR. Chemical genetics and the gibberellin pathway in Zea mays L. In: Wareing PF, ed. Plant growth substances 1982. London: Academic Press, 1982: p. 101–110.

    Google Scholar 

  2. Spray CR, Phinney BO, Gaskin P, et al. Internode length in Zea mays L. The dwarf-1 mutation controls the 3β-hydroxylation of gibberellin A20 to gibberellin Al. Planta 1984; 160: 464–468.

    Article  CAS  Google Scholar 

  3. Fujioka S, Yamane H, Spray CR, et al. Qualitative and quantitative analyses of gibberellins in vegetative shoots of normal dwarf-1, dwarf-2, dwarf-3, and dwarf-5 seedlings of Zea mays L. Plant Physiol. 1988; 88: 1367–1372.

    Article  PubMed  CAS  Google Scholar 

  4. Fujioka S, Yamane H, Spray CR, et al. The dominant non-gibberellin responding dwarf mutant (D8) of maize accumulates native gibberellins. Proc Natl Acad Sci USA. 1988; 85: 9031–9035.

    Article  PubMed  CAS  Google Scholar 

  5. Fujioka S, Yamane H, Spray CR, et al. Metabolism of gibberellins A20, A5 and A1 in normal and dominant Dwarf-8 seedlings of maize. Biogenesis of gibberellin A3. Plant Physiol. 1990; submitted.

    Google Scholar 

  6. Kamiya Y, Takahashi M, Takahashi N, et al. Conversion of gibberellin A20 to gibberellins A1 and A5 in a cell-free system from Phaseolus vulgaris. Planta. 1984; 162: 154–158.

    Article  CAS  Google Scholar 

  7. Takahashi M, Kamiya Y, Takahashi N, et al. Metabolism of gibberellins in a cell-free system from immature seeds of Phaseolus vulgaris L. Planta. 1986; 168: 190–199.

    CAS  Google Scholar 

  8. Kwak S, Kamiya Y, Takahashi M, et al. Metabolism of [14C]GA20 in a cell-free system from developing seeds of Phaseolus vulgaris L. Plant Cell Physiol. 1988; 29: 707–711.

    CAS  Google Scholar 

  9. Kwak S, Kamiya Y, Sakurai A. et al. Partial purification and characterization of gibberellin 3β-hydroxylase from immature seeds of Phaseolus vulgaris L. Plant Cell Physiol. 1988; 29: 935–943.

    CAS  Google Scholar 

  10. Smith VA, MacMillan J. Purification and partial characterization of a gibberellin 2β-hydroxylase from Phaseolus vulgaris. J Plant Growth Regul. 1984; 2: 251–264.

    Article  CAS  Google Scholar 

  11. Albone KS, Gaskin P, MacMillan J, et al. Enzymes from seeds of Phaseolus vulgaris L.: Hydroxylation of gibberellins A20 and A1 and 2,3-dehydrogenation of gibberellin A20. Planta. 1989; 177: 108–115.

    Article  CAS  Google Scholar 

  12. MacMillan J. Metabolism of gibberellins A20 and A9 in plants: Pathways and enzymology. In: Pharis RP, Rood, SB, eds. Plant growth substances 1988. Berlin: Springer-Verlag, 1990: in press.

    Google Scholar 

  13. Albone KS, Gaskin P, MacMillan, J. et al. The biosynthetic origin of gibberellins A3 and A7 in cell-free extracts from seeds of Marah macrocarpus and Malus domestica. Plant Physiol. 1990: in press.

    Google Scholar 

  14. Willis CL, Gaskin P, MacMillan J. [1β,2β,3β-3H3]Gibberellin A20: Confirmation of structure by 3H NMR and by mass spectrometry. Phytochemistry. 1988; 27: 3970–3972.

    Article  CAS  Google Scholar 

  15. Ingram TJ, Reid JB, Murfet IC. et al. Internode length in Pisum. The le gene controls the 3β-hydroxylation of gibberellin A20 to gibberellin A1. Planta. 1984; 160: 455–463.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this paper

Cite this paper

Smith, V.A., Albone, K.S., MacMillan, J. (1991). Enzymatic 3β-Hydroxylation of Gibberellins A20 and A5 . In: Takahashi, N., Phinney, B.O., MacMillan, J. (eds) Gibberellins. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3002-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3002-1_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7754-5

  • Online ISBN: 978-1-4612-3002-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics