Skip to main content

Antheridiogens of Schizaeaceous Ferns: Structures, Biological Activities, and Biosynthesis

  • Conference paper
Gibberellins

Abstract

In the life cycle of ferns, germinated spores develop to prothallia, on which archegonia and anteridia are formed. Fertilization of eggs in the archegonia with sperms from the antheridia results in the production of young sporophytes. In 1950, Döpp1 demonstrated that mature Pteridium aquilinum prothallia produced hormonal substance(s) inducing antheridial formation in many species of the ferns Polypodiaceae. Since then, more than ten fern species have been reported2–4 to produce such antheridiuminducing substances, which were designated as antheridiogens.5 Though it has been shown,6 based on cross-testing of biological activities, that there are several different types of fern antheridiogens, only four have been characterized.7–11 All the antheridiogens characterized were derived from schizaeaceous ferns, and they are all gibberellin (GA)-related compounds. The purpose of this article is to review chemical structures and biological activities of the antheridiogens and to discuss their biosynthetic relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Döpp W. Eine die Antheridienbildung bei Farnen fördernde Substanz in den Prothallien von Pteridium aquilinum L. (Kuhn). Ber Dtsch Bot Ges. 1950; 63: 139–147.

    Google Scholar 

  2. Näf U, Nakanishi K, Endo M, On the physiology and chemistry of fern antheridiogens. Bot Rev. 1975; 41: 315–359.

    Article  Google Scholar 

  3. Emigh V, Farrar DR. Gemmae: A role in sexual reproduction in the fern genus Vittaria. Science. 1977; 198: 297–298.

    Article  PubMed  CAS  Google Scholar 

  4. Yamane H, Nohara K, Takahashi N, et al. Identification of antheridic acid as an antheridiogen in Anemia rotundifolia and Anemia flexuosa. Plant Cell Physiol. 1987; 28: 1203–1207.

    CAS  Google Scholar 

  5. Näf U. On dark-germination and antheridium formation in Anemia phyllitidis. Physiol Plant. 1966; 19: 1079–1088.

    Article  Google Scholar 

  6. Näf U. On separation and identity of fern antheridiogens. Plant Cell Physiol. 1968; 9: 27–33.

    Google Scholar 

  7. Nakanishi K, Endo M, Näf U, et al. Structure of the antheridium-inducing factor of the fern Anemia phyllitidis. J Amer Chem Soc. 1971; 93: 5579–5581.

    Article  CAS  Google Scholar 

  8. Corey EJ, Myers AG, Takahashi N, et al. Constitution of antheridiuminducing factor of Anemia phyllitidis. Tetrahedron Lett. 1986; 27: 5083–5084.

    Article  CAS  Google Scholar 

  9. Yamane H, Takahashi N, Takeno K, et al. Identification of gibberellin A9 methyl ester as a natural substance regulating formation of reproductive organs in Lygodium japonicum. Planta. 1979; 147: 251–256.

    Article  CAS  Google Scholar 

  10. Yamane H, Sato Y, Nohara K, et al. The methyl ester of a new gibberellin, GA73: The principal antheridiogen in Lygodium japonicum. Tetrahedron Lett. 1988; 29: 3959–3962.

    Article  CAS  Google Scholar 

  11. Furber M, Mander LN, Nester JE, et al. Structure of a novel antheridiogen from the fern Anemia mexicana. Phytochemistry. 1989; 28: 63–66.

    Article  CAS  Google Scholar 

  12. Corey EJ, Myers AG. Total synthesis of (±)-antheridium-inducing factor (AAn 2) of the fern Anemia phyllitidis. Clarification of stereochemistry. J Amer Chem Soc. 1985; 107: 5574–5576.

    Article  CAS  Google Scholar 

  13. Furber M, Mander LN. Conversion of gibberellin A7 into antheridic acid, the antheridium inducing factor from the fern Anemia phyllitidis: A new protocol for controlled 1,2-bond shifts. J Amer Chem Soc. 1987; 109: 6389–6396.

    Article  CAS  Google Scholar 

  14. Zanno PR, Endo M, Nakanishi K, et al. On the structural diversity of fern antheridiogens. Naturwissenschaften. 1972; 59: 512.

    Article  PubMed  CAS  Google Scholar 

  15. Nester JE, Veysey S, Coolbaugh RC. Partial characterization of an antheridiogen of Anemia mexicana: Comparison with the antheridiogen of A. phyllitidis. Planta. 1987; 170: 26–33.

    Article  CAS  Google Scholar 

  16. Näf U. On the control of antheridium formation in the fern species Lygodium japonicum. Proc Soc Exp Biol Med. 1960; 105: 82–86.

    PubMed  Google Scholar 

  17. Näf U. Control of antheridium formation in the fern species Anemia phyllitidis. Nature. 1959; 184: 798–800.

    Article  Google Scholar 

  18. Schraudolf H. Die Wirkung von Phytohormonen auf Keimung und Entwicklung von Farnprothallien. I. Auslösung der Antheridienwirkung und Dunkelkeimung bei Schizaeaceen durch Gibberellinsäure. Biol Zentralbl. 1962; 81: 731–740.

    Google Scholar 

  19. Hiraga K, Yamane H, Takahashi N. Biological activity of some synthetic gibberellin glucosyl esters. Phytochemistry. 1974; 13: 2371–2376.

    Article  CAS  Google Scholar 

  20. Satoh Y. Studies on plant growth regulators controlling the life cycle of pteridophytes. Ph.D. thesis, The University of Tokyo, 1984.

    Google Scholar 

  21. Takeno K, Yamane H, Nohara K, et al. Biological activity of antheridic acid, an antheridiogen of Anemia phyllitidis. Phytochemistry. 1987; 26: 1855–1857.

    Article  CAS  Google Scholar 

  22. Brian PW, Grove JF, Mulholland TPC. Relationships between structure and growth-promoting activity of gibberellins and some allied compounds, in four test systems. Phytochemistry. 1967; 6: 1475–1499.

    Article  CAS  Google Scholar 

  23. Takeno K, Yamane H, Yamauchi T, et al. Biological activities of the methyl ester of gibberellin A73, a novel and principal antheridiogen in Lygodium japonicum. Plant Cell Physiol. 1989; 30: 201–205.

    CAS  Google Scholar 

  24. Sugai M, Nakamura K, Yamane H, et al. Effects of gibberellins and their methyl esters on dark spore germination and antheridium formation in Lygodium japonicum and Anemia phyllitidis. Plant Cell Physiol. 1987; 28: 199–202.

    CAS  Google Scholar 

  25. Sato Y, Yamane H, Kobayashi M, et al. Metabolism of GA9 methyl ester in prothallia of Lygodium japonicum. Agric Biol Chem. 1985; 49: 255–258.

    Article  CAS  Google Scholar 

  26. Yamane H, Yamaguchi I, Kobayashi M, et al. Identification of ten gibberellins from sporophytes of the tree fern, Cyathea australis. Plant Physiol. 1985; 78: 899–903.

    Article  PubMed  CAS  Google Scholar 

  27. Murofushi N, Nakayama M, Takahashi N, et al. 12-Hydroxylation of gibberellins A12 and A14 by prothallia of Lygodium japonicum and identification of a new gibberellin, GA74. Agric Biol Chem. 1988; 52: 1825–1828.

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this paper

Cite this paper

Yamane, H. (1991). Antheridiogens of Schizaeaceous Ferns: Structures, Biological Activities, and Biosynthesis. In: Takahashi, N., Phinney, B.O., MacMillan, J. (eds) Gibberellins. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3002-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3002-1_37

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7754-5

  • Online ISBN: 978-1-4612-3002-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics