Skip to main content

Gibberellins and the Regulation of Shoot Elongation in Woody Plants

  • Conference paper
Gibberellins

Abstract

Perennial, temperate-zone woody plants display a great variety of patterns of shoot elongation. Anatomically, height growth in trees is due to an activity of apical meristem (eumeristem) and subapical meristem (rib meristem, primary elongating meristem). The apical meristem is responsible for most of the organogenic phenomena normally associated with shoot morphogenesis, while the subapical meristem is the major site of cell division and elongation contributing to stem extension.1 Morphologically, shoot growth consists of formation of leaf and node initials and elongation of internodes. In the free growth pattern, characteristic of juvenile stages of many temperate-zone dicotyledonous as well as some coniferous species, these two processes can occur simultaneously. On the other hand, mature stages of most conifers and some deciduous trees have a fixed or determined growth pattern in which stem unit initiation and elongation are separated in time and shoot extension is a result of elongation of these preformed stem units.2,3 The growth pattern is an inherent characteristic of the plant, and species showing various combinations of free and fixed growth can also be found. In addition, the growth pattern of a species normally changes with ontogeny, from free to more or less fixed growth with increasing maturity of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sachs RM. Stem elongation. Ann Rev Plant Physiol. 1965; 16: 73–96.

    Article  CAS  Google Scholar 

  2. Kozlowski TT. Growth and development of trees, Vol. II. New York: Academic Press, 1971.

    Google Scholar 

  3. Lanner RM. Patterns of shoot development in Pinus and relationship to growth potential. In: Cannell MGR, Last FT, eds. Tree physiology and improvement. New York: Academic Press, 1976: p. 223–243.

    Google Scholar 

  4. Westing AH. Effect of gibberellin on conifers: generally negative. J For. 1959; 57: 120–122.

    CAS  Google Scholar 

  5. Melchior GH, Knapp R. Gibberellin-Wirkungen an Bäumen. Silvae Genet. 1962; 11: 29–39.

    CAS  Google Scholar 

  6. Paleg LG. Physiological effects of gibberellins. Ann Rev Plant Physiol. 1965; 16: 291–322.

    Article  CAS  Google Scholar 

  7. Nitsch JP. Photoperiodism in woody plants. Proc Amer Soc Hort Sci. 1957; 70: 526–544.

    CAS  Google Scholar 

  8. Junttila O. Effects of gibberellic acid and temperature on the growth of young seedlings of Syringa vulgaris L. J. Hort Sci. 1970; 45: 315–329.

    CAS  Google Scholar 

  9. Pharis RP. Probable roles of plant hormones regulating shoot elongation, diameter growth and crown form of coniferous trees. In: Cannell MGR, Last FT, eds. Tree physiology and yield improvement. New York: Academic Press, 1976: p. 291–306.

    Google Scholar 

  10. Pharis RP, Kuo CG. Physiology of gibberellins in conifers. Can J For Res. 1977; 7: 299–325.

    Article  CAS  Google Scholar 

  11. Ross SD, Pharis RP, Binder WD. Growth regulators and conifers: Their physiology and potential uses in forestry. In: Nickell LG, ed. Plant growth regulating chemicals, Vol. II. Boca Raton, Florida: CRC Press, 1983: pp. 35–78.

    Google Scholar 

  12. Bilan MV, Kemp AK. Effect of gibberellin on height growth of one-year old seedlings of loblolly pine. J For. 1960; 58: 35–37.

    CAS  Google Scholar 

  13. Ross SD. Enhancement of shoot elongation in Douglas-fir by gibberellin A4/7 and its relation to the hormonal promotion of flowering. Can J For Res. 1983; 13: 986–994.

    Article  CAS  Google Scholar 

  14. Owens JN, Webber JE, Ross SD, et al. Interaction between gibberellin A4/7 and root-pruning on the reproductive and vegetative processes in Douglas-fir. III. Effects on anatomy of shoot elongation and terminal bud development. Can J For Res. 1985; 15: 354–364.

    Article  Google Scholar 

  15. Pharis RP, Ruddat M, Phillips C, et al. Response of conifers to growth retardants. Bot Gaz. 1967; 128: 105–109.

    Article  CAS  Google Scholar 

  16. Dunberg A, Eliasson L. Effects of growth retardants on Norway spruce (Picea abies). Physiol Plant. 1972; 26: 302–305.

    Article  CAS  Google Scholar 

  17. Junttila O. Growth cessation and shoot tip abscission in Salix. Physiol Plant. 1976; 38: 278–286.

    Article  CAS  Google Scholar 

  18. Wheeler NC. Effect of paclobutrazol on Douglas-fir and loblolly pine. J Hort Sci. 1987; 62: 101–106.

    CAS  Google Scholar 

  19. Rietveld W. Effect of paclobutrazol on conifer seedling morphology and field performance. In: Landis TD, ed. Proceedings of the Combined Meeting of the Western Forest Nursery Association. General Technical Report RM 167, Fort Collins, USDA Forest Service, Rocky Mountain Forest and Range Experimental Station, 1988: pp. 19–23.

    Google Scholar 

  20. Nitsch JP. Growth responses of woody plants to photoperiodic stimuli. Proc Amer Soc Hort Sci. 1957; 70: 512–525.

    Google Scholar 

  21. Vince-Prue D. Photoperiod and hormones. In: Pharis RP, Reid DM, eds. Hormonal regulation of development. III. Role of environmental factors. Encyclopedia of plant physiology, New series, Vol. 11. Heidelberg: Springer-Verlag, 1985: pp. 308–364.

    Google Scholar 

  22. Junttila O, Jensen E. Gibberellins and photoperiodic control of shoot elongation in Salix. Physiol Plant. 1988; 74: 371–376.

    Article  CAS  Google Scholar 

  23. Phinney BO. Gibberellin A1, dwarfism and the control of shoot elongation in higher plants. In: Crozier A, Hillman RT, eds. The biosynthesis and metabolism of plant hormones. Cambridge: Cambridge University Press, 1984: pp. 17–41.

    Google Scholar 

  24. Dennis R, Thompson WK, Pharis RP. The influence of dwarfing interstock on the distribution and metabolism of xylem-applied tritiated gibberellin A4 in apple. Plant Physiol. 1986; 82: 1091–1095.

    Google Scholar 

  25. Webber JE, Ross SD, Pharis RP, et al. Interaction between gibberellin A4/7 and root-pruning on the reproductive and vegetative processes in Douglas-fir. II. Effects on shoot elongation and its relationship to flowering. Can J For Res. 1985; 15: 348–353.

    Article  Google Scholar 

  26. Williams DJ, Danick BP, Pharis RP. Early progeny testing and evaluation of controlled crosses of black spruce. Can J For Res. 1987; 17: 1442–1450.

    Article  Google Scholar 

  27. Dunberg A, Oden PC. Gibberellin and conifers. In: Crozier A, ed. The biochemistry and physiology of gibberellin, Vol. 2. New York: Praeger, 1983: pp. 221–295.

    Google Scholar 

  28. Kawarada A, Sumiki Y. The occurrence of gibberellin A1 in watersprouts of citrus. Bull Agric Chem Soc Jpn. 1959; 23: 343–344.

    CAS  Google Scholar 

  29. Poling SM, Mair VP. Identification of endogenous gibberellins in navel orange shoots. Plant Physiol. 1988; 88: 639–642.

    Article  PubMed  CAS  Google Scholar 

  30. Dathe W, Sembdner G, Yamaguchi L, et al. Gibberellins and growth inhibitors in spring bleeding sap, roots and branches of Juglans regia L. Plant Cell Physiol. 1982; 23: 115–123.

    CAS  Google Scholar 

  31. Koshioka M, Taylor JS, Edwards GR, et al. Identification of gibberellin A19 and A20 in vegetative apple tissue. Agric Biol Chem. 1985; 49: 1223–1226.

    Article  CAS  Google Scholar 

  32. Rood SB, Bate NJ, Mander LN, et al. Identification of gibberellins Al and A19 from Populus balsamifera x Populus deltoides. Phytochemistry. 1988; 27: 1114.

    Article  Google Scholar 

  33. Junttila O, Abe H, Pharis RP. Endogenous gibberellin in elongating shoots of clones of Salix dasyclados and Salix viminalis. Plant Physiol. 1988; 87: 78 1784.

    Google Scholar 

  34. Davies JK, Jensen E, Junttila O, et al. Identification of endogenous gibberellin from Salix pentandra. Plant Physiol. 1985; 78: 473–476.

    Article  PubMed  CAS  Google Scholar 

  35. Oden PC, Andersson B, Gref R. Identification of gibberellin A9 in extracts of Norway spruce (Picea abies (L.) Karst.) by combined gas chromatography-mass spectrometry. J Chromatogr. 1982; 247: 173–148.

    Article  Google Scholar 

  36. Oden PC, Schwenen L, Graebe JE. Identification of gibberellins in Norway spruce (Picea abies (L.) Karst.) by combined gas chromatography-mass spectrometry. Plant Physiol. 1987; 84: 516–519.

    Article  PubMed  CAS  Google Scholar 

  37. Moritz T, Philipson JJ, Oden PC. Detection and identification of gibberellins in Sitka spruce (Picea sitchensis) of different ages and coning ability by bioassay, radioimmunoassay and gas chromatography-mass spectrometry. Physiol Plant. 1989; 75: 325–332.

    Article  CAS  Google Scholar 

  38. Lorenzi R, Saunders PF, Heald JK, et al. A novel gibberellin from needles of Picea sitchensis. Plant Sci Lett. 1977; 8: 179–182.

    Article  CAS  Google Scholar 

  39. Zhang R, Pearce D, Pharis RP, et al. Identification and quantitation of endogenous gibberellins in Pinus radiata. In: Pharis RP, Rood SB, eds. Abstracts for the 13th International Conference on Plant Growth Substances, Calgary, 1988; Abstract No. 377.

    Google Scholar 

  40. Lorenzi R, Horgan R, Heald JK. Gibberellin A9 glucosyl ester in needles of Picea sitchensis. Phytochemistry. 1976; 15: 789–790.

    Article  CAS  Google Scholar 

  41. Dathe W, Sembdner G, Kefeli VI, et al. Gibberellins, abscisic acid, and related inhibitors in branches and bleeding sap of birch (Betula pubescens Ehrh.). Biochem Physiol Pflanzen. 1978; 173: 238–248.

    CAS  Google Scholar 

  42. Wareing PF, Saunders PF. Hormones and dormancy. Ann Rev Plant Physiol. 1971; 22: 261–288.

    Article  CAS  Google Scholar 

  43. Lavender DP, Silim SN. The role of plant growth regulators in dormancy in forest trees. In: Kossuth SV, Ross SD, eds. Hormonal control of tree growth. Dordrecht: Martinus Nijhoff Publishers, 1987: pp. 171–192.

    Google Scholar 

  44. Dunberg A. Dynamics of gibberellin-like substances and of indole-3-acetic acid in Picea abies (L.) Karst. during the period of shoot elongation. Physiol Plant. 1976; 32: 186–190.

    Article  Google Scholar 

  45. Dunberg A, Malmberg G, Sassa T, et al. Metabolism of tritiated gibberellin A4 and A9 in Norway spruce, Picea abies (L.) Karst. Effects of a cultural treatment known to enhance flowering. Plant Physiol. 1983; 71: 257–262.

    Article  PubMed  CAS  Google Scholar 

  46. Bate NJ, Rood SB, Blake TJ. Gibberellins and heterosis in poplar. Can J Bot. 1988; 66: 1148–1152.

    Article  CAS  Google Scholar 

  47. Graebe JE. Gibberellin biosynthesis and control. Ann Rev Plant Physiol. 1987; 38: 419–465.

    Article  CAS  Google Scholar 

  48. Junttila O, Pharis RP. Studies on the metabolism of [3H]GA1 in Salix in relation to photoperiod. In: Schreiber K, Schutte HR, Sembdner G, eds. Conju-gated plant hormones—structure, metabolism and function. Proceedings of the International Symposium, Gera, 1987; pp. 205–215.

    Google Scholar 

  49. Rood SB, Junttila O. Minor influence of photoperiod on the metabolism of gibberellin A20 in Salix pentandra. Physiol Plant. 1989; 76: 506–510.

    Article  Google Scholar 

  50. Junttila O. Effects of different gibberellins on elongation growth under short day conditions in seedlings of Salix pentandra. Physiol Plant. 1981; 53: 315–318.

    Article  CAS  Google Scholar 

  51. Dunberg A. Metabolism of tritiated gibberellin Al in seedlings of Norway spruce (Picea abies). Physiol Plant. 1981; 51: 349–352.

    Article  CAS  Google Scholar 

  52. Kamienska A, Pharis RP, Wample RL, et al. Occurrence and metabolism of gibberellin in conifers. In: Tamura S, ed. Plant growth substances 1973. Tokyo: Hirokawa Publishing Co., 1974: p. 305–313.

    Google Scholar 

  53. Wample RL, Durley RC, Pharis RP. Metabolism of gibberellin A4 by Vegetative shoots of Douglas fir at 3 stages of ontogeny. Physiol Plant. 1975; 35: 273278.

    Google Scholar 

  54. Lavender DP, Sweet GB, Zaerr JB, et al. Spring shoot growth in Douglas-fir may be initiated by gibberellins exported from the roots. Science. 1973; 182: 838–839.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer-Verlag New York Inc.

About this paper

Cite this paper

Junttila, O. (1991). Gibberellins and the Regulation of Shoot Elongation in Woody Plants. In: Takahashi, N., Phinney, B.O., MacMillan, J. (eds) Gibberellins. Springer, New York, NY. https://doi.org/10.1007/978-1-4612-3002-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-3002-1_19

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4612-7754-5

  • Online ISBN: 978-1-4612-3002-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics